PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Precipitation strengthening of ultrafine-grained Al-Mg-Si alloy processed by hydrostatic extrusion

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Precipitation strengthening of an ultrafine-grained Al-Mg-Si alloy has been studied using samples obtained by hydrostatic extrusion. It has been demonstrated that the microstructure after hydrostatic extrusion consists of two types of grains: (1) nano-sized free of dislocations and surrounded with high angle grain boundaries and (2) micron-sized with dislocation substructure. After ageing at 160C, small needle-like precipitates appear in grain interiors of both nano- and micron-sized grains, bringing about a significant strength improvement. However, the precipitates are smaller than those in their coarse grained counterparts. As a consequence, they constitute weaker barriers for dislocations and induce a lower strengthening effect. In addition, one may observe intensive precipitation at nano-grains boundaries, which further reduces the strengthening effect. It was also shown that peak ageing and overageing take place for much shorter time than in the case of coarse grained samples and are caused by the grain growth rather than a change in the precipitation state.
Rocznik
Tom
Strony
77--84
Opis fizyczny
Bibliogr. 37 poz., rys., tab., wykr.
Twórcy
  • Warsaw University of Technology, Faculty of Materials Science and Engineering, Woloska 141, 02-507 Warsaw, Poland
autor
  • Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland
  • Warsaw University of Technology, Faculty of Materials Science and Engineering, Woloska 141, 02-507 Warsaw, Poland
  • Warsaw University of Technology, Faculty of Materials Science and Engineering, Woloska 141, 02-507 Warsaw, Poland
Bibliografia
  • [1] I.J. Polmear, Light Alloys. From Traditional Alloys to Nanocrystals, Elsevier,2006
  • [2] J. Dwight, Aluminium Design and Construction, Taylor & Francis e-Library, 2002
  • [3] E.O. Hall, Proc. Phys. Soc. B 64 (1951) 747–753
  • [4] N.J. Petch, J. Iron Steel Inst. 174 (1953) 25–28
  • [5] R.Z. Valiev, T.G. Langdon, Prog. Mater. Sci. 51 (2006) 881–981
  • [6] P.W. Bridgman, Phys. Rev. 48 (1935) 825
  • [7] R.Z. Valiev, N.A. Krasilnikov, N.K. Tsenev, Mater. Sci. Eng. A 137 (1991) 35–40
  • [8] Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai, R.G. Hong, Scr. Mater. 39 (1998) 1221–1227
  • [9] P.B. Prangnell, J.R. Bowen, P.J. Apps, Mater. Sci. Eng. A 375–377 (2004) 178–185
  • [10] M. Cabibbo, E. Evangelista, C. Scalabroni, Micron 36 (2004) 401–414
  • [11] R.Z. Valiev, R.K. Islamagliev, I.V. Alexandrov, Prog. Mater. Sci. 45 (2000) 103–189
  • [12] M.V. Markushev, C.C. Bampton, M.Y. Murashkin, D.A. Hardwick, Mater. Sci. Eng. A 234–236 (1997) 927
  • [13] M. Vaseghi, A.K. Taheri, S.I. Hong, H.S. Kim, Mater. Des. 31 (2010) 4076–4082
  • [14] C.D. Marioara, S.J. Andersen, H.W. Zandbergen, R. Holmestad, Metal. Mater. Trans. 36A (2005) 691–702
  • [15] J.K. Kim, H.G. Jeong, S.I. Hong, Y.S. Kim, W.J. Kim, Scr. Mater. 45 (2001) 901–907
  • [16] M. Vaseghi, H.S. Kim, Mater. Des. 36 (2012) 735–740
  • [17] K. Hockauf, L.W. Meyer, M. Hockauf, T. Halle, J. Mater. Sci. 45 (2010) 4754–4760
  • [18] M. Hockauf, L.W. Meyer, B. Zillman, M. Hietschold, S. Schulze, L. Krueger, Mater. Sci. Eng. A 503 (2009) 167–171
  • [19] S. Dadbakhsh, A.K. Taheri, C.W. Smith, Mater. Sci. Eng. A 527 (2010) 4758–4766
  • [20] J.K. Kim, H.K. Kim, J.W. Park., W.J. Kim, Scr. Mater. 53 (2005) 1207 –1211
  • [21] M. Cai, D.P. Field, G.W. Lorimer, Mater. Sci. Eng. A 373 (2004) 65–71
  • [22] T. Hu, K. Ma, T.D. Topping, J.M. Schoenung, E.J. Lavernia, Acta Mater. 61 (2013) 2163–2178
  • [23] G.A. Edwards, K. Stiller, G.L. Dunlop, M.J. Couper, Acta Mater. 46 (1998) 3893–3904
  • [24] F. Delmas, M.J. Casanove, P. Lours, A. Couret, A. Couju, Mater. Sci. Eng. A 373(2004) 80–89
  • [25] M. Lewandowska, K.J. Kurzydlowski, J. Mater. Sci. 43 (2008) 7299–7306
  • [26] M. Lewandowska, Solid State Phenom. 114 (2006) 109–116
  • [27] L. Olejnik, M. Kulczyk, W. Pachla, A. Rosochowski, Int. J. Mater. Form. 2 (Suppl. 1) (2009) S621–S624
  • [28] H.J. Roven, M. Liu, C.J. Werenskiold, Mater. Sci. Eng. A 483–484 (2008) 54–58
  • [29] W.J. Liu, J.J. Jonas, Metall. Trans. 19A (1988) 1415–1424
  • [30] Z. Wang, X. Sun, Z. Yang, Q. Yong, C. Zhang, Z. Li, Y. Weng, Mater. Sci. Eng. A 573(2013) 84–91
  • [31] M. Cabibbo, H.J. McQueen, E. Evangelista, S. Spigarelli, M. DiPaola, A. Falchero, Mater. Sci. Eng. A 460–461 (2007) 86–94
  • [32] D. Kuhlmann-Wilsdorf, Mater. Sci. Eng. A 113 (1989) 1–41
  • [33] W. Lechner, W. Puff, B. Mingler, M.J. Zehetbauer, R. Wurschum, Scr. Mater. 61 (2009) 383–386
  • [34] H.J. Roven, H. Nesboe, J.C. Werenskiold, T. Seibert, Mater. Sci. Eng. A 410–411 (2005) 426–429
  • [35] Z.H. Ismail, Scr. Mater. 32 (1995) 457–462
  • [36] C.D. Marioara, S.J. Andersen, J. Jansen, H.W. Zandbergen, Acta Mater. 51 (2003) 789–796
  • [37] K. Ma, H. Wen, T. Hu, T.D. Topping, D. Isheim, D.N. Seidman, E.J. Lavernia, J. M. Schoenung, Acta Mater. 62 (2014) 141–155
Uwagi
PL
Przedruk z czasopisma "Materials Science & Engineering A", 15 July 2014, Vol. 609, pp. 80-87
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-be00af8f-037a-44af-9fa9-e742c5aadef7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.