PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Hybridization of the Gravitational Search Algorithm and Big Bang-Big Crunch Algorithm for Data Clustering

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Clustering is a very important technique in knowledge discovery. It has been widely used in data mining, image processing, machine learning, bioinformatics, marketing and other fields. Clustering discern the objects into groups called clusters, based on certain criteria. The similarity of objects is high within the clusters, but low between the clusters. In this work, we investigate a hybridization of the gravitational search algorithm (GSA) and big bang-big crunch algorithm (BB-BC) on data clustering. In the proposed approach, namely GSA-BB, GSA is used to explore the search space for finding the optimal locations of the clusters centroids. Whenever GSA loses its exploration, BB-BC algorithm is used to diversify the population. The performance of the proposed method is compared with GSA, BB-BC and K-means algorithms using six standard and real datasets taken from the UCI machine learning repository. Experimental results indicate that there is significant improvement in the quality of the clusters obtained by the proposed hybrid method over the non-hybrid methods.
Wydawca
Rocznik
Strony
319--333
Opis fizyczny
Bibliogr. 34 poz., tab.
Twórcy
autor
  • Islamic Azad University, Khoy Branch, Iran
autor
  • Islamic Azad University, Khoy Branch, Iran
Bibliografia
  • [1] Carullo, M., E. Binaghi, and I. Gallo, An online document clustering technique for short web contents. Pattern Recognition Letters, 2009. 30(10): p. 870-876.
  • [2] Friedman, M., et al., Anomaly detection in web documents using crisp and fuzzy-based cosine clustering methodology. Information Sciences, 2007. 177(2): p. 467-475.
  • [3] Yang, S., et al., Evolutionary clustering based vector quantization and SPIHT coding for image compression. Pattern Recognition Letters, 2010. 31(13): p. 1773-1780.
  • [4] Das, S. and S. Sil, Kernel-induced fuzzy clustering of image pixels with an improved differential evolution algorithm. Information Sciences, 2009. 180(8): p. 1237-1256.
  • [5] Mitra, S. and P.P. Kundu, Satellite image segmentation with Shadowed C-Means. Information Sciences, 2011. 181(17): p. 3601-3613.
  • [6] Park, N.H., S.H. Oh, and W.S. Lee, Anomaly intrusion detection by clustering transactional audit streams in a host computer. Information Sciences, 2010. 180(12): p. 2375-2389.
  • [7] Hruschka, E.R., R.J.G.B. Campello, and L.N. de Castro, Evolving clusters in gene-expression data. Information Sciences, 2006. 176(13): p. 1898-1927.
  • [8] Liao, L., T. Lin, and B. Li, MRI brain image segmentation and bias field correction based on fast spatially constrained kernel clustering approach. Pattern Recognition Letters, 2008. 29(10): p. 1580-1588.
  • [9] Hirano, S., X. Sun, and S. Tsumoto, Comparison of clustering methods for clinical databases. Information Sciences, 2004. 159(3-4): p. 155-165.
  • [10] Yan Yang, Tonny Rutayisire, Chao Lin, Tianrui Li, Fei Teng, An improved Cop-Kmeans clustering for solving constraint violation based on MapReduce framework. Fundamenta Informaticae, 2013.
  • [11] Jain, A.K., Data clustering: 50 years beyond K-means. Pattern Recognition Letters, 2010. 31(8): p. 651-666.
  • [12] Hatamlou, A., In search of optimal centroids on data clustering using a binary search algorithm. Pattern Recognition Letters, 2012. 33(13): p. 1756-1760.
  • [13] Liu, Y., et al., A tabu search approach for the minimum sum-of-squares clustering problem. Information Sciences, 2008. 178(12): p. 2680-2704.
  • [14] Das, S., A. Abraham, and A. Konar, Automatic clustering using an improved differential evolution algorithm. IEEE Transactions on Systems, Man, and Cybernetics Part A: Systems and Humans, 2008. 38(1): p. 218-237.
  • [15] Kuo, R.J., et al., Integration of particle swarm optimization and genetic algorithm for dynamic clustering. Information Sciences, 2012. 195(0): p. 124-140.
  • [16] Hatamlou, A., Black hole: A new heuristic optimization approach for data clustering. Information Sciences, 2013. 222: p. 175-184.
  • [17] Hatamlou, A., S. Abdullah, and H. Nezamabadi-pour, Application of Gravitational Search Algorithm on Data Clustering, Rough Sets and Knowledge Technology. 2011, Springer Berlin / Heidelberg. p. 337-346.
  • [18] Hatamlou, A., S. Abdullah, andH. Nezamabadi-pour, A combined approach for clustering based on K-means and gravitational search algorithms. Swarm and Evolutionary Computation, 2012. 6(0): p. 47-52.
  • [19] Hatamlou, A., S. Abdullah, and Z. Othman. Gravitational search algorithm with heuristic search for clustering problems. in Data Mining and Optimization (DMO), 2011 3rd Conference on. 2011.
  • [20] Ghosh, A., et al., Aggregationpheromone density based data clustering. Information Sciences, 2008.178(13): p. 2816-2831.
  • [21] Hatamlou, A. and M. Hatamlou, PSOHS: an efficient two-stage approach for data clustering. Memetic Computing: p. 1-7. http://dx.doi.org/10.1007/s12293-013-0110-x
  • [22] Senthilnath, J., S.N. Omkar, and V. Mani, Clustering using firefly algorithm: Performance study. Swarm and Evolutionary Computation, 2011. 1(3): p. 164-171.
  • [23] Hatamlou, A., S. Abdullah, and M. Hatamlou, Data clustering using big bang-big crunch algorithm, in Communications in Computer and Information Science. 2011. p. 383-388.
  • [24] Rashedi, E., H. Nezamabadi-pour, and S. Saryazdi, GSA: A Gravitational Search Algorithm. Information Sciences, 2009. 179(13): p. 2232-2248.
  • [25] Erol, O.K. and I. Eksin, A new optimization method: Big Bang-Big Crunch. Advances in Engineering Software, 2006.37(2): p. 106-111.
  • [26] Akbari, R., et al., A multi-objective artificial bee colony algorithm. Swarm and Evolutionary Computation, 2012.2(0): p. 39-52.
  • [27] Dye, C.-Y, A finite horizon deteriorating inventory model with two-phase pricing and time-varying demand and cost under trade credit financing using particle swarm optimization. Swarm and Evolutionary Computation, 2012. 5(0): p. 37-53.
  • [28] Euchi, J. and R. Mraihi, The urban bus routing problem in the Tunisian case by the hybrid artificial ant colony algorithm. Swarm and Evolutionary Computation, 2012. 2(0): p. 15-24.
  • [29] Malviya, R. and D.K. Pratihar, Tuning of neural networks using particle swarm optimization to model MIG welding process. Swarm and Evolutionary Computation, 2011. 1(4): p. 223-235.
  • [30] Navalertporn, T. and N.V Afzulpurkar, Optimization of tile manufacturing process using particle swarm optimization. Swarm and Evolutionary Computation, 2011. 1(2): p. 97-109.
  • [31] Panda, R., M.K. Naik, and B.K. Panigrahi, Face recognition using bacterial foraging strategy. Swarm and Evolutionary Computation, 2011. 1(3): p. 138-146.
  • [32] Sahoo, N.C., S. Ganguly, and D. Das, Multi-objective planning of electrical distribution systems incorporating sectionalizing switches and tie-lines using particle swarm optimization. Swarm and Evolutionary Computation, 2012. 3(0): p. 15-32.
  • [33] Swarnkar, A., N. Gupta, and K.R. Niazi, Adapted ant colony optimization for efficient reconfiguration of balanced and unbalanced distribution systems for loss minimization. Swarm and Evolutionary Computation, 2011. 1(3): p. 129-137.
  • [34] C.L. Blake, C.J.M., UCI repository of machine learning databases. Available from: http://www.ics.uci.edu/- mlearn/MLRepository.html.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bdff5778-bef0-427c-8278-53bf87b41439
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.