PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Comparative analysis of different inverters and controllers to investigate performance of electrosurgical generators under variable tissue impedance

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Electrosurgical generators (ESGs) are currently the most widely used surgical technology for clinical operations. The main disadvantage of ESGs is their output power is irregular due to the variable tissue impedance. The heat dissipation caused by the high amount of thermal energy generated leads to medical complications for both patient and surgeon. In this research, various inverter topologies and power controllers are investigated to specify the best structure that ensures best performance. The type of inverter topologies investigated are three level and five level, while the PID structures investigated are integer order (IO-PID) and fractional order (FO-PID). The simulation results indicate that FO-PID with five level inverters is better than IO-PID with three level inverters in terms of minimum heat dissipation rate and THD of the output voltage and current.
Twórcy
  • Department of Scientific Affairs, Al-Zahraa University for Women 56001 Karbala, Iraq
  • Department of Electrical and Electronic Engineering, University of Kerbala Karbala 56001, Iraq
  • Al-Safwa University College 56001 Karbala, Iraq
  • Department Medical Instrumentation Techniques Eng., Al-Hussain University College 56001 Karbala, Iraq
  • College of Medicine, University of Al-Ameed 56001 Karbala, Iraq
  • College of Medicine, University of Al-Ameed 56001 Karbala, Iraq
Bibliografia
  • [1] A. Eginli, W. Haidari, M. Farhangian, P.M. Williford, Electrosurgery in dermatology, Clin. Dermatol. 39 (2021) 573–579. https://doi.org/10.1016/j.clindermatol.2021.03.004.
  • [2] A. Ayesha, A. Nigam, A. Kaur, Principles of electrosurgery in Laparoscopy, Pan Asian J Obs Gyn. 2 (2019) 22–29.
  • [3] D. V. Belik, A. V. Shekalov, N.A. Dmitriyev, S.A. Bogavev, K. Dornhopf, Development of Radio-Frequency Electrosurgical Unit EHVCh-1.76, in: 2018 14th Int. Sci. Conf. Actual Probl. Electron. Instrum. Eng. APEIE 2018 - Proc., 2018: pp. 349–351. https://doi.org/10.1109/APEIE.2018.8545034.
  • [4] M.M. El-Sayed, E. Saridogan, Principles and safe use of electrosurgery in minimally invasive surgery, Gynecol. Pelvic Med. 4 (2021) 6–6. https://doi.org/10.21037/gpm-2020-pfd-10.
  • [5] I. Cordero, Electrosurgical units - How they work and how to use them safely, Community Eye Heal. J. 28 (2015) 15–16.
  • [6] T. V. Nechay, S.M. Titkova, M. V. Anurov, E. V. Mikhalchik, K.Y. Melnikov-Makarchyk, E.A. Ivanova, A.E. Tyagunov, A. Fingerhut, A. V. Sazhin, Thermal effects of monopolar electrosurgery detected by real-time infrared thermography: An experimental appendectomy study, BMC Surg. 20 (2020) 116. https://doi.org/10.1186/s12893-020-00735-6.
  • [7] S. Fahad, N. Ullah, A.J. Mahdi, N. Ullah, A new robust closed-loop control system for electrosurgical generators, Res. Biomed. Eng. 36 (2020) 213–224. https://doi.org/10.1007/s42600-020-00062-y.
  • [8] A.M. Ridha, A.J. Mahdi, J.K. Abed, S. Fahad, PID fuzzy control applied to an electrosurgical unit for power regulation, J. Electr. Bioimpedance. 11 (2020) 72–80. https://doi.org/10.2478/joeb-2020-0011.
  • [9] S. NasimUllah, M.M. Rafiq, M. Ishfaq, M. Ali, A. Ibeas, J. Herrera, A closed loop robust control system for electrosurgical generators, in: Control Appl. Biomed. Eng. Syst., Elsevier, 2020: pp. 149–168. https://doi.org/10.1016/B978-0-12-817461-6.00006-8.
  • [10] A.I. Abdullah, A. Yahya, M. Rava, T.T. Swee, N. Idris, Design and Developments of Thermal Control System of Electrosurgical Unit via Sensor Based on Thermometric Techniques, J. Phys. Conf. Ser. 1529 (2020) 042081. https://doi.org/10.1088/1742-6596/1529/4/042081.
  • [11] R.E. Dodde, J.S. Gee, J.D. Geiger, A.J. Shih, Monopolar electrosurgical thermal management for minimizing tissue damage, IEEE Trans. Biomed. Eng. 59 (2012) 167–173. https://doi.org/10.1109/TBME.2011.2168956.
  • [12] G. Yao, D. Zhang, D. Geng, L. Wang, Novel ultrasonic vibration-assisted electrosurgical cutting system for minimizing tissue adhesion and thermal injury, Mater. Des. 201 (2021) 109528. https://doi.org/10.1016/j.matdes.2021.109528.
  • [13] H.A. Saber, A.J. Mahdi, M.H. Nawir, S. Fahad, M.S. Nazir, A. Goudarzi, Investigation and testing of high-frequency open-loop electrosurgical generator under varying bio-tissue impedances, in: AIP Conf. Proc., 2022. https://doi.org/10.1063/5.0067040.
  • [14] V. Tomov, S. Tabakov, Modern Advances in Energy Based Electrosurgical Devices, (2018).
  • [15] D.E. Azagury, Book Review: The SAGES Manual on the Fundamental Use of Surgical Energy (FUSE), Springer, New York, 2013. https://doi.org/10.1177/1553350613483927.
  • [16] M. Ciesielski, J. Siedlecki, M.K. Janik, Mathematical modelling of thermal and electrical processes in the polyp-colon system during electrosurgical polypectomy, Int. J. Heat Technol. 38 (2020) 808–816. https://doi.org/10.18280/ijht.380406.
  • [17] J.S. Shim, Copyright Warning & Restrictions, 2007. http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Some+Contributions+on+MIMO+Radar#0.
  • [18] A. Karayiğit, İ.B. Karakaya, D.B. Özdemir, H. Dizen, İ. Özer, B. Ünal, Ü. Özdemir, Is electrosurgery a revolution? Mechanism, benefits, complications, precautions, J. Pharm. Technolgy. 1 (2020) 60–64. https://doi.org/10.37662/jpt.2021.8.
  • [19] F.C. Meeuwsen, Safe Surgical Signatures, Delft University of Technology, 2019. https://doi.org/https://doi.org/10.4233/uuid:799ca1cd-d316-4919-8f0c-27f92db39ac5.
  • [20] M. El‐Sayed, S. Mohamed, E. Saridogan, Safe use of electrosurgery in gynaecological laparoscopic surgery, Obstet. Gynaecol. 22 (2020) 9–20. https://doi.org/10.1111/tog.12620.
  • [21] H. Ferreira, C. Ferreira, Principle and Use of Electrosurgery in Laparoscopy, in: A Man. Minim. Invasive Gynecol. Surg., Jaypee Brothers Medical Publishers (P) Ltd., 2015: pp. 69–69. https://doi.org/10.5005/jp/books/12446_6.
  • [22] K. Charoenkwan, Z. Iheozor-Ejiofor, K. Rerkasem, E. Matovinovic, Scalpel versus electrosurgery for major abdominal incisions, Cochrane Database Syst. Rev. 2017 (2017). https://doi.org/10.1002/14651858.CD005987.pub3.
  • [23] U. Birgersson, Electrical impedance of human skin and tissue alterations: mathematical modeling, Karolinska Institutet, Sweden, 2012.
  • [24] K.R. Foster, H.C. Lukaski, Whole-body impedance - What does it measure?, Am. J. Clin. Nutr. 64 (1996) 388S-396S. https://doi.org/10.1093/ajcn/64.3.388s.
  • [25] S.H. Hosseini, A. Farakhor, S.K. Haghighian, New cascaded multilevel inverter topology with reduced number of switches and sources, ELECO 2013 - 8th Int. Conf. Electr. Electron. Eng. (2013) 97–101. https://doi.org/10.1109/eleco.2013.6713811.
  • [26] M.Z. Aihsan, N.I. Ahmad, W.A. Mustafa, N.A. Rahman, J.A. Soo, Development of square wave inwerter using DC/DC boost converter, Int. J. Power Electron. Drive Syst. 10 (2019) 636. https://doi.org/10.11591/ijpeds.v10.i2.pp636-645.
  • [27] T. Dao, B.T. Phung, Effects of voltage harmonic on losses and temperature rise in distribution transformers, IET Gener. Transm. Distrib. 12 (2018) 347–354. https://doi.org/10.1049/iet-gtd.2017.0498.
  • [28] M. Salman, I.U. Haq, T. Ahmad, H. Ali, A. Qamar, A. Basit, M. Khan, J. Iqbal, Minimization of total harmonic distortions of cascaded H-bridge multilevel inverter by utilizing bio inspired AI algorithm, Eurasip J. Wirel. Commun. Netw. 2020 (2020) 66. https://doi.org/10.1186/s13638-020-01686-5.
  • [29] A. Y, Design and Simulation of Single-Phase Five-Level Symmetrical Cascaded H-Bridge Multilevel Inverter with Reduces Number of Switches, J. Electr. Electron. Syst. 07 (2018). https://doi.org/10.4172/2332-0796.1000281.
  • [30] K. Aseem, M.P. Subeekrishna, Comparitive Study of PID and Fractional Order PID Controllers for Industrial Applications, Int. J. Eng. Res. Technol. 7 (2019) 1–3.
  • [31] M. Dulǎu, A. Gligor, T.M. Dulǎu, Fractional Order Controllers Versus Integer Order Controllers, Procedia Eng. 181 (2017) 538–545. https://doi.org/10.1016/j.proeng.2017.02.431.
  • [32] G.M. Tina, W.H. Tang, A.J. Mahdi, Thermal parameter identification of photovoltaic module using genetic algorithm, in: IET Conf. Publ., IET, 2011: p. 21. https://doi.org/10.1049/cp.2011.0106.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bdfa66c9-e9c8-41d2-9562-a72bb5d2ea57
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.