PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Carbon Footprint Methodology in CFOOD Project

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the paper, the research on the process of optimizing the carbon footprint to obtain the low-carbon products is presented. The optimization process and limits were analyzed based on the CFOOD project co-financed by the Polish Research and Development Agency. In the article, the carbon footprint (CF) testing methods with particular emphasis on product life cycle assessment (LCA) are discussed. The main problem is that the energy received from the energy-meters per the production stage is not directly represented in the raw data set obtained from the factory because many production line machines are connected to a single measurement point. In the paper, we show that in some energy-demanding production stages connected with cooling processes the energy used for the same stage and similar production can differ even 25-40%. That is why the energy optimization in the production can be very demanding.
Rocznik
Strony
781--786
Opis fizyczny
Bibliogr. 33 poz., il., tab., wykr.
Twórcy
  • Faculty of Physics and Applied Informatics, University of Lodz, Poland
  • Faculty of Physics and Applied Informatics, University of Lodz, Poland
  • Faculty of Physics and Applied Informatics, University of Lodz, Poland
  • Faculty of Physics and Applied Informatics, University of Lodz, Poland
  • Faculty of Physics and Applied Informatics, University of Lodz, Poland
  • Faculty of Physics and Applied Informatics, University of Lodz, Poland
Bibliografia
  • [1] United Nations Framework Convention on Climate Change, published 1.07.2019
  • [2] Kyoto Protocol to the United Nations Framework Convention on Climate Change. UN Treaty Database, published 27.06.2019
  • [3] Paris Agreement. United Nations Treaty Collection, published 27.06.2019.
  • [4] European Environment Agency, Increasing energy consumption is slowing EU progress in the use of renewable energy sources and improving energy efficiency (in polish), published 22.03.2019
  • [5] I. Pavlova-Marciniak, “Anti–smog solutions and renewable energy resources development as a way to achieve low – carbon economy”, Electrotechnical review, 95 (2019), nr.8, 1-4
  • [6] H. C. J. Godfray, “Food security: The challenge of feeding 9 billion people”, Science 327 (2010), 812–818
  • [7] P. Meyfroidt, “Trade-offs between environment and livelihoods: Bridging the global land use and food security discussions”, Glob. Food Secur. 16 (2018), 9-16
  • [8] M. Wróbel-Jędrzejewska, U. Stęplewska, E. Polak, „Ślad środowiskowy technologii spożywczej” (in polish), Przemysł fermentacyjny i owocowo-warzywny, (2019), 4, 26-31
  • [9] M. Wróbel-Jędrzejewska, U. Stęplewska, E. Polak, „Wskaźniki oddziaływania przemysłu spożywczego na środowisko” (in polish), Przemysł Spożywczy, (2015), 9, 8-11
  • [10] S. A. Ali, L. Tedone, G. De Mastro, “Optimization of the environmental performance of rainfed durum wheat by adjusting the management practices”, J. Clean. Prod., 87 (2015), 105–118
  • [11] D. Bagchi, S. Biswas, Y. Narahari, P. Suresh, L. U. Lakshmi, N. Viswanadham, S. V. Subrahmanya, “Carbon Footprint Optimization: Game Theoretic Problems and Solutions”, ACM SIGecom Exchanges, Vol. 11, No. 1, 2012, pp. 34-38.
  • [12] A.L. Radu, M.A. Scrieciu, D.M. Caracota, “Carbon footprint analysis: Towards a projects evaluation model for promoting sustainable development”, Proc. Econ. Finance, 6 (2013) 353-363
  • [13] Z. Cuixia, L. Conghu, Z. Xi, “Optimization control method for carbon footprint of machining process”, Int J Adv Manuf Technol , 92 (2017) 1601–1607
  • [14] C. Zhang, C. Liu, L. Liu, “Diagnosis and application of carbon footprint for machining workshop on energy saving and emission reduction”, Comput. Model. New Technol, 18 (2014) 265–270
  • [15] B. He, W. Tang, J. Wang, S. Huang, Z. Deng, Y. Wang, “Low-carbon conceptual design based on product life cycle assessment”, Int J Adv Manuf Technol, 81(5) (2015) 863–874
  • [16] ISO14040 (2006) Environmental management-life cycle assessment: principles and framework. International Organization for Standardization, Geneva
  • [17] ISO14064-1 (2018) Greenhouse gases - Part 1: Specification with guidance at the organization level for quantification and reporting of greenhouse gas emissions and removals. International Organization for Standardization, Geneva
  • [18] PAS 2050 (2011) “The Guide to PAS2050-2011, Specification for the assessment of the life cycle greenhouse gas emissions of goods and services. British Standards Institution
  • [19] J IPCC Guidelines for National Greenhouse Gas Inventories (2006), URL: http://www.ipcc-nggip.iges.or.jp/public/2006gl/index.html, published 27.06.2019
  • [20] M. Kulak, T. Nemecek, E. Frossard, G. Gaillard, “Eco-efficiency improvement by using integrative design and life cycle assessment. The case study of alternative bread supply chains in France”, J. Clean. Prod., 112 (2016), 2452–2461
  • [21] M. A. Renouf, C. Renaud-Gentie, A. Perrin, C. Kanyarushoki, F. Jourjon, “Effectiveness criteria for customised agricultural life cycle assessment tools”, J. Clean. Prod., 179 (2018), 246–254
  • [22] D. Perez-Neira, A. Grollmus-Venegas, “Life-cycle energy assessment and carbon footprint of peri-urban horticulture. A comparative case study of local food systems in Spain”, Landscape and Urban Planning, 172 (2018), 60-68
  • [23] A. Nabavi-Pelesaraei, S. Rafiee, S. S. Mohtasebi, H. Hosseinzadeh-Bandbafha, K. Chau, “Energy consumption enhancement and environmental life cycle assessment in paddy production using optimization techniques”, J. Clean. Prod., 162 (2017), 571-586
  • [24] ISO/TS 14067 (2018) Greenhouse gases - Carbon footprint of products - Requirements and guidelines for quantification. International Organization for Standardization, Geneva
  • [25] S. Elhedhli, R. Merrick, “Green supply chain network design to reduce carbon emissions”, Transp Res Part D, 17 (2012), 370-379
  • [26] D. I. Patricio, R. Rieder, “Computer vision and artificial intelligence in precision agriculture for grain crops: A systematic review”, Computers and Electronics in Agriculture, 153 (2018) , 69-81
  • [27] J. Kulczycka, M. Wernicka, „Metody i wyniki obliczania śladu węglowego działalności podmiotów branży energetycznej i wydobywczej” (in polish), Zeszyty naukowe Instytutu Gospodarki Surowcami Mineralnymi i Energią Polskiej Akademii Nauk, 89 (2015), 133-142
  • [28] ANSI/ITSDF B56.1-2016 – Safety Standard for Low Lift and High Lift Trucks
  • [29] Shrink That Footprint, URL: http://shrinkthatfootprint.com/electricity-emissions-around-the-world, last accessed: 31 May 2020
  • [30] A. Moro, L. Lonza, “Electricity carbon intensity in European Member States: Impacts on GHG emissions of electric vehicles”, Transportation Research Part D, 64 (2018) 5-14
  • [31] J. Kulczycka, M. Wernicka, „Zarządzanie śladem węglowym w przedsiębiorstwach w Polsce – bariery i korzyści” (in polish), Polityka energetyczna, t.18 z.2 (2014), 61-72
  • [32] P. Milczarski, A. Hłobaż, P. Maślanka, B. Zieliński, Z. Stawska, P. Kosiński, "Carbon footprint calculation and optimization approach for CFOOD project", CEUR Workshop Proceedings 2683 (2019) 30-34
  • [33] P. Milczarski, B. Zieliński, Z. Stawska, A. Hłobaż, P. Maślanka, P. Kosiński, "Machine Learning Application in Energy Consumption Calculation and Assessment in Food Processing Industry", ICAISC (2) (2020), Springer LNAI 12416, 369-379
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bdf52299-81b1-43f4-8402-b7b7b78aac25
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.