PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Zastosowanie poli(dicyjanopropylosiloksanu) w czujnikach z akustyczną falą powierzchniową do detekcji fosforoorganicznych środków trujących w powietrzu

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Application of poly(biscyanopropylsiloxane) in surface acoustic wave sensors to organophosphorus chemical warfare agent detection
Języki publikacji
PL
Abstrakty
PL
W pracy zbadano możliwość wykorzystania poli(dicyjanopropylosiloksanu) (PCNPS) jako pokrycia sensorowego w czujnikach z akustyczną falą powierzchniową (AFP), służących do detekcji fosforoorganicznych środków trujących. Polimer nałożono na rezonatory z AFP metodą napylania próżniowego. Badano odpowiedzi częstotliwościowe i amplitudowe czujników w stosunku do par dimetylometylofosfonianu (DMMP) w celu określenia czułości względem związków fosforoorganicznych. Badano również inne substancje testowe (heptan, triletyloamina (TEA), acetonitryl (ACN), dimetyloformamid (DMF), n-butanol) jako potencjalne interferenty. Uzyskano dużą czułość sygnału częstotliwościowego względem DMMP (ok. 500 Hz/ppm). Jednocześnie czułości względem pozostałych substancji testowych, z wyjątkiem DMF, znajdowały się na poziomie szumów pomiarowych. Niska temperatura zeszklenia fazy PCNPS, przekładająca się na dobre właściwości dynamiczne czujników, wskazuje na możliwość zastosowania tej fazy w czujnikach z AFP.
EN
The paper investigates applicability of poly(biscyanopropylsiloxane) (PCNPS) as a chemosensitive coating agent for surface acoustic wave (SAW) sensors to organophosphorus chemical warfare agent (CWA) detection. The polymer was deposited on SAW resonators by vacuum evaporation. Sensor sensitivity to organophosphorus compounds was investigated using dimethyl methylphosphonate (DMMP) vapors via sensor frequency and amplitude response testing. Also, other substances from the set (heptane, triethylamine (TEA), acetonitrile (ACN), dimethylformamide (DMF), n-butanol) were tested as potential interference factors. Excellent sensitivity of frequency signal was achieved (about 500 Hz/ppm) against DMMP. Sensitivity toward the remaining test substances, except for DMF, was comparable to the noise level. Low glass transition temperature of the PCNPS phase, corresponding to good dynamic properties of the sensors, indicates suitability of this phase for application in SAW sensors.
Czasopismo
Rocznik
Strony
9--16
Opis fizyczny
Bibliogr. 37 poz., rys., tab.
Twórcy
autor
  • Wojskowa Akademia Techniczna im. J. Dąbrowskiego w Warszawie, Wydział Nowych Technologii i Chemii, ul. gen. W. Urbanowicza 2, 00-908 Warszawa
autor
  • Wojskowa Akademia Techniczna im. J. Dąbrowskiego w Warszawie, Wydział Nowych Technologii i Chemii, ul. gen. W. Urbanowicza 2, 00-908 Warszawa
autor
  • Wojskowa Akademia Techniczna im. J. Dąbrowskiego w Warszawie, Wydział Nowych Technologii i Chemii, ul. gen. W. Urbanowicza 2, 00-908 Warszawa
Bibliografia
  • 1. E. RABER, A. JIN, K. NOONAN, R. MCGUIRE, R. D. KIRVEL: Decontamination issues for chemical and biological warfare agents: How clean is clean enough? International Journal of Environmental Health Research 2001, Vol. 11, No. 128, pp. 128–148.
  • 2. H. WOHLTJEN, R. DESSY: Surface acoustic wave probe for chemical analysis. I. Introduction and instrument description. Analytical Chemistry 1979, Vol. 51, No. 9, pp. 1458–1464.
  • 3. A. AFZAL, N. IQBAL, A. MUJAHID, R. SCHIRHAGL: Advanced vapor recognition materials for selective and fast responsive surface acoustic wave sensors: A review. Analytica Chimica Acta 2013, Vol. 787, pp. 36–49.
  • 4. K. JASEK, S. NEFFE, M. PASTERNAK: SAW sensor for mercury vapour detection. Acta Physica Polonica A 2012, Vol. 122, pp. 825–838.
  • 5. K. LÄNGE, B. E. RAPP, M. RAPP: Surface acoustic wave biosensors: A review. Analytical and Bioanalytical Chemistry 2008, Vol. 391, pp. 1509–1519.
  • 6. X. ZHANG, J. FANG, L. ZOU, Y. ZOU, L. LANG, F. GAO, N. HU, P. WANG: A novel sensitive cell-based Love Wave biosensor for marine toxin detection. Biosensors and Bioelectronics 2016, Vol. 77, pp. 573–579.
  • 7. R. A. MCGILL, V. K. NGUYEN, R. CHUNG, R. E. SHAFFER, D. DILELLA, J. L. STEPNOWSKI, T. E. MLSNA, D. L. VENEZKY, D. DOMINGUEZ: The ‛NRL-SAWRHINO’: A nose for toxic gases. Sensors and Actuators B 2000, Vol. 65, pp. 10–13.
  • 8. M. HOUMMADY, C. BONJOUR, J. COLLIN, F. LARDETVIEUDRIN, G. MARTIN: Surface acoustic wave (SAW) dew point sensor: application to dew point hygrometry. Sensors and Actuators B 1995, Vol. 27, pp. 315–317.
  • 9. J. P. SANTOS, M. J. FERNÁNDEZ, J. L. FONTECHA, J. LOZANO, M. ALEIXANDRE, M. GARCÍA, J. GUTIÉRREZ, M.C. HORRILLO: SAW sensor array for wine discrimination. Sensors and Actuators B 2005, Vol. 107, pp. 291–295.
  • 10. P. VERMA, R. D. S. YADAVA: Polymer selection for SAW sensor array based electronic noses by fuzzy c-means clustering of partition coefficients: Model studies on detection of freshness and spoilage of milk and fi sh. Sensors and Actuators B 2015, Vol. 209, pp. 751–769.
  • 11. M. PERIS, L. ESCUDER-GILABERT: A 21st century technique for food control: Electronic noses. Analytica Chimica Acta 2009, Vol. 638, pp. 1–15.
  • 12. M. HUSSAIN, F. RUPP, H. P. WENDEL, F. K. GEHRING: Bioapplications of acoustic crystals, a review. Trends in Analytical Chemistry 2018, Vol. 102, pp. 194–209.
  • 13. C. M. HARRIS: Product review: Seeing SAW potential. Analytical Chemistry 2003, Vol. 75, pp. 355–358.
  • 14. M. J. VELLEKOOP: Acoustic wave sensors and their technology. Ultrasonics 1998, Vol. 36, pp. 7–14.
  • 15. J. D. N. CHEEKE, Z. WANG: Acoustic wave gas sensors. Sensors and Actuators B 1999, Vol. 59, pp. 146–153.
  • 16. J. W. GRATE: Hydrogen-bond acidic polymers for chemical vapor sensing. Chemical Reviews 2008, Vol. 108, No. 2, pp. 726–745.
  • 17. W. WANG, S. T. HE, S. Z. LI, M. LIU, Y. PAN: Advances in SXFA-coated SAW chemical sensors for organophosphorous compound detection. Sensors 2011, Vol. 11, pp. 1526–1541.
  • 18. W. TIAN, D. S. BALLANTINE Jr.: Characterization of cyano functionalized stationary gas chromatographic phases by linear solvation energy relationships. Journal of Chromatography A 1995, Vol. 718, pp. 357–369.
  • 19. J. LI, D. A. WHITMAN: Characterization and selectivity optimization on diol, amino, and cyano normal phase columns based on linear solvation energy relationships. Analytica Chimica Acta 1998, Vol. 368, pp. 141–154.
  • 20. I. W. KIM, H. S. LEE, Y. K. LEE, M. D. JANG, J. H. PARK: Selectivity of amino-, cyano- and diol-bonded silica in reversed-phase liquid chromatography. Journal of Chromatography A 2001, Vol. 915, pp. 35–42.
  • 21. M. H. ABRAHAM, J. ANDONIAN-HAFTVAN, C. M. DU, V. DIART, G. S. WHITING, J. W. GRATEB, R. A. MCGILL: Hydrogen bonding. Part 29. Characterization of 14 sorbent coatings for chemical microsensors using a new solvation equation. Journal of the Chemical Society, Perkin Transactions 2 1995, pp. 369–378.
  • 22. J. W. GRATE, S. J. PATRASH: Method for estimating polymer coated wave vapor sensor responses. Analytical Chemistry 1995, Vol. 67, pp. 2162–2169.
  • 23. Q. ZHENG, Y. C. FU, J. Q. XU: Advances in the chemical sensors for the detection of DMMP – a simulant for nerve agent Sarin. Procedia Engineering 2010, Vol. 7, pp. 179–184.
  • 24. L. YANG, Q. HAN, S. CAO, F. HUANG, M. QIN, C. GUO, M. DING: Research on the interaction of hydrogen-bond acidic polymer sensitive sensor materials with chemical warfare agents simulants by inverse gas chromatography. Sensors 2015, Vol. 15, pp. 12884–12890.
  • 25. S. L. ROSE-PEHRSSON, J. W. GRATE, D. S. BALLANTINE Jr., P.C. JURS: Detection of hazardous vapors including mixtures using pattern recognition analysis of responses surface acoustic wave devices. Analytical Chemistry 1988, Vol. 60, pp. 2801–2811.
  • 26. J. W. GRATE, A. SNOW, D. S. BALLANTINE Jr., H. WOHLTJEN, M. H. ABRAHAM, R. A. MCGILL, P. SASSON: Determination of partition coefficients from surface acoustic wave vapor sensor responses and correlation with gas-liquid chromatographic partition coefficients. Analytical Chemistry 1988, Vol. 60, pp. 869–875.
  • 27. H. WOHLTJEN: Mechanism of operation and design considerations for surface acoustic wave device vapor sensors. Sensors and Actuators B 1984, Vol. 5, pp. 307–325.
  • 28. J. W. GRATE, M. KLUSTY: Surface acoustic wave vapor sensor based on resonator devices. Analytical Chemistry 1991, Vol. 63, No. 17, pp. 1719–1727.
  • 29. M. H. ABRAHAM, A. IBRAHIM, A. M. ZISSIMOS: Determination of sets of solute descriptors from chromatographic measurements. Journal of Chromatography A 2004, Vol. 1037, pp. 29–47.
  • 30. R. A. MCGILL, T. E. MLSNA, R. CHUNG, V. K. NGUYEN, J. STEPNOWSKI: The design of functionalized silicone polymers for chemical sensor detection of nitroaromatic compounds. Sensors and Actuators B 2000, Vol. 65, pp. 5–9.
  • 31. M. H. ABRAHAM, R. FUCHS, G. S. WHITING, E. C. CHAMBERS: Thermodynamics of solute transfer from water to hexadecane. Journal of the Chemical Society, Perkin Transactions 2 1990, pp. 291–300.
  • 32. M. H. ABRAHAM, E. MATTEOLI: The temperature variation of the hydrophobic effect. Journal of the Chemical Society, Faraday Transactions 1 1988, Vol. 84, pp. 1985–2000.
  • 33. L. C. TAN, P. W. CARR, M. H. ABRAHAM: Study of retention in reversed-phase liquid chromatography using linear solvation energy relationships I. The stationary phase. Journal of Chromatography A 1996, Vol. 752, pp. 1–18.
  • 34. R. A. McGILL, M. H. ABRAHAM, J. W. GRATE: Choosing polymer coatings for chemical sensors. Chemtech 1994, Vol. 24, No. 9, pp. 27–37.
  • 35. Rezonator z AFP RS197. Karta katalogowa. Instytut Technologii i Materiałów Elektronicznych.
  • 36. K. JASEK, W. MILUSKI, M. PASTERNAK: A new system for acoustoelectronic gas 7-sensors analysis. Acta Physica Polonica A 2013, Vol. 124, pp. 445–447.
  • 37. M. GRABKA, K. JASEK, M. PASTERNAK, W. MILUSKI: A system for SAW sensors research. Aparatura Badawcza i Dydaktyczna 2015, Vol. 20, No. 4, pp. 251–258.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bdef6a7b-e687-427e-9d3d-1f27d20257e5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.