Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper is a case study conducted to present an approach to the process of designing new products using virtual prototyping. During the first stage of research a digital geometric model of the vehicle was created. Secondly it underwent a series of tests utilising the multibody system method in order to determine the forces and displacements in selected construction nodes of the vehicle during its movement on an uneven surface. In consequence the most dangerous case of loads was identified. The obtained results were used to conduct detailed strength testing of the bicycle frame and changes its geometry. For the purposes of this case study two FEA software environments (Inventor and SolidWorks) were used. It has been confirmed that using method allows to implement the process of creating a new product more effectively as well as to assess the influence of the conditions of its usage more efficiently. It was stated that using of different software environments increases the complexity of the technical process of production preparation but at the same time increases the certainty of prototype testing. The presented example of simulation calculations made for the bicycle can be considered as a useful method for calculating other prototypes with high complexity of construction due to its systematized character of chosen conditions and testing procedure. It allows to verify the correctness of construction, functionality and perform many analyses, which can contribute to the elimination of possible errors as early as at the construction stage.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
124–--135
Opis fizyczny
Bibliogr. 40 poz., rys., tab., wykr.
Twórcy
autor
- Bialystok University of Technology, Faculty of Management Engineering, Department of Production Management, Wiejska 45A, 15-351 Białystok, Poland
Bibliografia
- [1] Szatkowski K., Modern production management. Process approach [in Polish: Nowoczesne zarządzanie produkcją. Ujęcie procesowe], Warszawa, PWN, 2018.
- [2] Czaplicka-Kolarz K., Kruczek M., Burchart-Korol D., Eco-efficiency concept for sustainable production management, Zeszyty Naukowe Politechniki Śląskiej, Organizacja i Zarządzanie, 63, 59–71, 2013.
- [3] Branowski B., Basics of machine drive design, [in Polish: Podstawy konstrukcji napędów maszyn], Wydawnictwo Politechniki Poznańskiej, Poznań, 2007.
- [4] Rix J., Haas S., Teixeira J., Virtual Prototyping: Virtual environments and the product design process, Springer, 2016.
- [5] Castorani V., Landi D., Germani M., Determination of the optimal configuration of energy recovery ventilator through virtual prototyping and DoE techniques, Procedia CIRP, 50, 52–57, 2016, https://doi.org/10.1016/j.procir.2016.05.019.
- [6] Trąbka A., Electric vehicle tube-frame virtual prototyping in Autodesk Inventor Professional Program, [in Polish: Wirtualne prototypowanie konstrukcji nośnej pojazdu o napędzie elektrycznym w programie Autodesk Inventor Professional], Mechanik, 2, p. 12, 2013.
- [7] SydorM., Introduction to CAD. Basics of computeraided design, [in Polish: Wprowadzenie do CAD. Podstawy komputerowo wspomaganego projektowania], PWN, Warszawa, 2012.
- [8] Kamberov K., Todorov G., Stoev S., Romanov B., Mechanical strength test of train wheel based on virtual prototyping, Proceedings in Manufacturing Systems, 10, 3, 99–104, 2015.
- [9] Hirz M., Dietrich W., Gfrerrer A., Lang J., Integrated Computer-Aided Design in Automotive Development, Springer-Verlag, Berlin Heidelberg, 2013.
- [10] Matta A.K., Ranga Rajub D., Suman K.N.S., The integration of CAD/CAM and Rapid Prototyping in Product Development: A review, Materials Today: Proceedings, 2, 4–5, 3438–3445, 2015, https://doi.org/10.1016/j.matpr.2015.07.319.
- [11] Tokarczyk J., Method for virtual prototyping of cabins of mining machines operators, Arch. Min. Sci., 60, 1, 329–340, 2015, doi: 10.1515/amsc-2015-0022.
- [12] Vergnano A., Berselli G., Pellicciari M., Parametric virtual concepts in the early design of mechanical systems: a case study application, International Journal for Interactive Design and Manufacturing, 2015, doi: 10.1007/s12008-015-0295-y.
- [13] Dudziński P., Kosiara A., Konieczny A., Virtual prototyping of a new generation undercarriage with rubber tracks for arctic applications, [in Polish: Wirtualne prototypowanie nowej generacji układu jezdnego na gąsienicach elastomerowych do zastosowań arktycznych], Postępy Nauki i Techniki, 14, 64–74, 2012.
- [14] Vrtiel Š., Hajdu Š., Behúlová M., Analysis of the machine frame stiffness using numerical simulation, IOP Conf. Series: Materials Science and Engineering, 266, 012015, 2017, doi: 10.1088/1757899X/266/1/012015.
- [15] Hao W.J. et al., Study on dynamic roll stability of articulated engineering vehicle based on virtual prototype, Applied Mechanics and Materials, (365–366), 435–439, 2013, https://doi.org/10.4028/www.scientific.net/AMM.365-366.435.
- [16] Chadaj K., Malczyk P., Frączek J., A parallel Hamiltonian formulation for forward dynamics of closed-loop multibody systems, Multibody System Dynamics, 39, 51–77, 2017, doi: 10.1007/s11044016-9531-x.
- [17] Lipiński K., Proportional-Derivative and ModelBased Controllers for Control of a Variable Mass Manipulator, Applied Mechanics and Materials, 831, 54–62, 2016, doi: 10.1007/s11044-016-9531-x.
- [18] Schiehlen W., Valasek M., Virtual nonlinear multibody systems, Springer Science & Business Media, 2012.
- [19] Shabana A., Dynamics of Multibody Systems, 4th ed., Cambridge University Press, Cambridge, 2013.
- [20] Wang Z. et al., Nonlinear dynamics and chaotic control of a flexible multibody system with uncertain joint clearance, Nonlinear Dynamics, 86, 3, 1571– 1597, 2016, doi: 10.1007/s11071-016-2978-8.
- [21] Jaskulski A., Autodesk Inventor Professional 2018PL/2018+/Fusion 360: design methodology, [in Polish: Autodesk Inventor Professional 2018PL/2018+/Fusion 360: metodyka projektowania], PWN, Warszawa, 2017.
- [22] Tickoo S., Autodesk Inventor Professional 2018 for Designers, Cadcim Technologies, USA, 2017.
- [23] Łukaszewicz K., Use of CAD Software in the Process of Virtual Prototyping of Machinery, Procedia Engineering Journal, 182, 425–433, 2017, https://doi.org/10.1016/j.proeng.2017.03.127.
- [24] Hoes M.J.A.J.M. et al., Measurement of forces exerted on pedal and crank during work on a bicycle ergometer at different loads, Internationale Zeitschrift fu¨r angewandte Physiologie einschließlich Arbeitsphysiologie, 26, 33, 33–42, 1968.
- [25] Peterson L., Londry K., Finite-element structural analysis: A new tool for bicycle design: The strain energy method, Bike Tech: Bicycling Magazine’s Newsletter for the Technical Enthusiast, 5(2), 1986, available online: https://www.grantadesign.com/ eco/ecodesign.htm (accessed 4 July 2019).
- [26] Devaiah B.B., Rajesh Purohit R.S., Rana V.P., Stress Analysis of A Bicycle Frame, Materials Today: Proceedings, 5, 9, 3, 18920–18926, 2018, https://doi.org/10.1016/j.matpr.2018.06.241.
- [27] Wu C-C., Ballance D., Static and free vibration analyses of a bike using finite element method, International Journal of Engineering Research & Science, 1(7), 60–86, 2015.
- [28] Zhang J., Gao J.H., Wu J.G., Numerical optimization and analysis on vibration characteristics of bicycles based on the novel CA-PSO algorithm, Journal of Vibroengineering, 19, 6, 4018–4032, 2017.
- [29] Chomka G., Chudy J., Kondaszewski M., Simulation tests for strength of the bicycle frame with profiles and universal connectors, [in Polish: Badania symulacyjne wytrzymałości ramy rowerowej z kształtowników i uniwersalnych łączników], Autobusy, 9, 117–122, 2018.
- [30] Giagopoulos D., Arailopoulos A., Computational framework for model updating of large scale linear and nonlinear finite element models using state of the art evolution strategy, Computers & Structures, 192, 210–232, 2017.
- [31] Manoharan, N., Analysis of Bicycle Frame Using Composite Material, Medico-Legal Update. Diva Enterprises Private Limited, 18(1), 488–491, 2018.
- [32] Saric S., Pervan N., Colic M., Muminovic A., Conceptual design and stress analysis of the composite frame of Dirt Jump Mountain Bike, International Journal of Mechanical Engineering and Technology (IJMET), 9, 3, 204–213, 2018.
- [33] Vanwalleghem J., De Baere I., Loccufier M., Van Paepegem W., Development of a test rig and a testing procedure for bicycle frame stiffness measurements, Sports Engineering, 21, 75–84, 2018.
- [34] Covill D., Allard P., Drouet J.M., Emerson N., An Assessment of Bicycle Frame Behaviour under Various Load Conditions Using Numerical Simulations, Procedia Engineering, 147, 665–670, 2016.
- [35] Lin C.C., Huang C.J., Liu C.C., Structural analysis and optimization of bicycle frame designs, Advances in Mechanical Engineering, 9(12), 1–10, 2017.
- [36] Covill D., Begg S., Elton E., Milne M., Morris R., Katz T., Parametric finite element analysis of bicycle frame geometries, Procedia Engineering, 72, 441–446, 2014.
- [37] Niesterowicz B., Jastrzębski D., Calculations on city bicycle frame durability, [in Polish: Obliczenia wytrzymałościowe ramy roweru miejskiego], Modelowanie Inżynierskie, 61, 33–38, 2017.
- [38] Mucha W., Kuś W., Mountain bicycle frame testing as an example of practical implementation of hybrid simulation using RTFEM, AIP Conference Proceedings, 1922, 140002, 1–9, 2018.
- [39] STEREO 160 HPA, available online: www.cube.eu/en/products/fullsuspension/stereo/cubestereo-160-hpa-race-275-blacknflashrednblue-2016 (accessed on 4 July 2019).
- [40] O’Hare J., Cope E., Warde S., Five steps to eco design. Improving the Environmental Performance of Products through Design, available online: https://www.grantadesign.com/eco/ecodesign.htm (accessed on 5 July 2019).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bdeefced-9150-4e77-910c-6c842e9b9615