Identyfikatory
Warianty tytułu
Badanie zależności pomiędzy liczbą i pozycją splotów nabieranych i wytrzymałością dzianin wykonanych na szydełkarce cylindrycznej
Języki publikacji
Abstrakty
The subject of noise has received an increasing amount of attention from scientists, technologists and the public as a whole because a high noise level may determine the quality of human life. Therefore acoustic insulation is an essential need for both driver and passengers in order to reduce noise related problems. The use of recycled materials in nonwovens provides alternatives for the production of ecologically friendly acoustic products for the automotive industry. Recently noise absorbent textile materials, especially nonwoven structures or recycled materials, have been widely used because of the low production costs and their being aesthetically appealing. This paper reports the acoustic behaviour of needlepunched nonwoven fabrics which were produced with different thickness and mass per unit area. Comparison of the physical properties such as thickness, density, mass per unit area, air permeability, tensile strength and elongation was performed for all samples and data obtained from tests were statistically analysed with Design Expert software. In conclusion, it is observed that air permeability decreases with an increase in the mass per unit area of fabric. Higher air permeability results in higher sound transmission, and therefore less sound insulation.
Zagadnienie tłumienia hałasu uzyskuje coraz większe znaczenie w badaniach naukowych, technologicznych i zagadnieniach ogólnych ponieważ poziom dźwięku określa jakość ludzkiej egzystencji i dlatego izolacja akustyczna jest podstawową koniecznością przy różnych zastosowaniach w tym w przemyśle motoryzacyjnym dla kierowcy pojazdu i pasażera. Zastosowanie materiałów z recyklingu we włókninach stosowanych do izolacji dźwięku stanowi ekologiczną i tanią alternatywę produkcyjną dla przemysłu motoryzacyjnego. Zbadano akustyczne przy różnych częstotliwościach dźwięku właściwości włóknin igłowanych o różnej grubości i masie na jednostkę powierzchni włókniny. Jednocześnie dla wszystkich próbek badano grubość, gęstość, masę na jednostkę powierzchni, przepuszczalność powietrza, wytrzymałość na zrywanie i wydłużenie. Wszystkie właściwości porównywano statystycznie badając korelacje z właściwościami akustycznymi.
Czasopismo
Rocznik
Strony
107--113
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
autor
- Department of Fashion and Textile Design, Fine Arts Faculty, Gaziantep University, Gaziantep, Turkey
Bibliografia
- 1. Midha VK, Chavhan V. Nonwoven sound absorption materials. International Journal of Textile and Fashion 2012; 2: 45-55.
- 2. Sengupta S. Sound reduction by needle-punched nonwoven fabrics. Indian J. Fibre & Textil. Res. 2010; 35: 237-242.
- 3. Cao H, Yu K, Qian K. Sound insulation property of three dimensional spacer fabric composites. Fibres & Textiles in Eastern Europe 2014; 4: 64-67.
- 4. Lou CW, Lin JH, Su KK. Recycling polyester and polypropylene nonwoven selvages to produce functional sound absorption composites. Textil. Res. J. 2005; 75: 390-394.
- 5. Nick A, Becker U, Thoma W. Improved acoustic behaviour of interior parts of renewable resources in the automotive industry. Journal Poly Environment 2002; 10: 115-118.
- 6. Liu X, Liu J, Su X. Simulation model for the absorption coefficient of double layered nonwovens. Fibres & Textiles in Eastern Europe 2012; 4: 102-107.
- 7. Ersoy S, Kücük H. Investigation of industrial tea-leaf-fibre waste materials for its sound absorption peoperties. App. Acoustics 2009; 70: 215-220.
- 8. Carvalho R, Rana S, Fangueiro R, Soutinho F. Noise reduction performance of thermobonded nonwovens. In: 12th World Textile Conference AUTEX, 13-15 June 2012, Zadar, Croatia.
- 9. Dias T, Monaragala R. Sound absorption in knitted structures for interior noise reduction in automobiles. Measurement Science and Technology 2006; 17: 2499-2505.
- 10. Dias T, Monaragala R, Lay E. Analysis of thick spacer fabrics to reduce automobile interior noise. Measurement Scien. and Techn. 1991; 18: 1979-1991.
- 11. Öztürk MK, Nergis BU, Candan C. Knitted fabric design with enhanced Acoustic Properties. J. Textil. Eng. 2010; 27, 13-19.
- 12. Na Y, Lancaster J, Casali J, Cho G. Sound absorption coefficients of micro-fiber fabrics by reverberation room method. Textil. Res. J. 2010; 77: 330-335.
- 13. Krucinska I, Gliscinska E, Michalak M, Kazimierczak J, Bloda A, Ciechanska D. Preliminary studies on the manufacturing of thermoplastic sound absoring composites from nonwovens and cellulose submicrofibres. In: 13th Autex Textil Conf., May 22-24, 2013, Dresden, Germany.
- 14. Chen D, Li J, Ren J. Study on sound absorption property of ramie fiber reinforced poly composites. Composites: Part A, 2010; 41: 1012-1018.
- 15. Büyükakıncı BY, Sökmen N, Küçük H. Thermal conductivity and acoustic properties of natural fiber mixed polyurethane composites. Tekstil ve Konfeksiyon 2011; 2: 124-132.
- 16. Chen Y, Jiang N. Carbonized and activated non-wovens as high-performance acoustics materials: part 1 noise absorption. Textil. Res. J. 2013; 77: 785-791.
- 17. Tascan M, Vaughn E. Effects of total surface area and fabric density on the acoustical behavior of needle-punched nonwoven fabrics. Textil. Res. J. 2010; 78: 289-296.
- 18. Küçük M, Korkmaz Y. The effect of physical parameters on sound absorption properties of natural fiber mixed nonwoven composites. Textil. Res. J. 2012; 82: 2043-2053.
- 19. Parikh DV, Chen Y, Sun L. Reducing automotive interior noise with natural fiber nonwoven floor covering systems. Textil. Res. J. 2006; 76: 813-820.
- 20. Lee Y, Joo C. Sound absorption properties of recycled polyester fibrous assembly absorbers. Autex Res. J. 2003; 3: 78-84.
- 21. Tai KC, Chen P, Lin CW, Lou CW, Tan HM, Lin JH. Evaluation on the sound absorption and mechanical property of the multi-layer needle-punching nonwovens. Advanced Materials Res. 2010; 123: 475-478.
- 22. Mirjalili SA, Shahi MM. Investigation on the acoustic characteristics of multi-layered nonwoven structure. Part 1- Multi-layer nonwoven structures with the simple configuration. Fibres & Textiles in Eastern Europe 2012; 3: 73-77.
- 23. Çinçik E, Koç E. An Analysis on air permeability of polyester/viscose blended needle-punched nonwovens. Textil Res. J. 2012; 82: 430-442.
- 24. Anandjiwala RD, Boguslavsky L. Development of needle-punched nonwoven fabrics from flax fibers for air filtration application. Textil Res. J. 2008; 87: 614-624.
- 25. Ciukas R, Abramaviciute J. Investigation of the air permeability of socks knitted from yarns with peculiar properties. Fibres & Textiles in Eastern Europe 2010; 18: 84-88.
- 26. Roy AN, Ray P. Optimization of jute needle-punched nonwoven fabric properties: part II-some mechanical and functional properties. J. Natural Fibers 2009; 6: 303-318.
- 27. Montgomery DC. Design and Analysis of Experimental. 5th Edition, New York, USA, John Wiley and Sons, 2011, p.175.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bdeb4dff-d169-41bb-9886-bd426af6ab06