PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical simulations of temperature and stress distribution in thermal barrier coatings in the context of differences in input data values – bond coat and substrate materials

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Symulacje numeryczne rozkładu temperatury oraz stanu naprężeń w powłokowych barierach cieplnych w kontekście różnic w wartościach danych wejściowych – warstwa pośrednia i materiał podłoża
Języki publikacji
EN
Abstrakty
EN
The article presents the research results on the impact of differences in input data values concerning materials used in thermal barrier coating systems on the results of the finite element method (FEM) simulation of temperature distribution and Huber-Mises equivalent stresses. This article focuses on the material parameters characterizing the intermediate layer and the base material. It was shown that, as in the case of the 8YSZ ceramic layer, the data are characterized by a very wide scatter of values. It was found that the results of the simulations obtained with the use of these data differ significantly from each other, depending on the adopted reference point, i.e. whether minimum, maximum, median or average values were adopted for the simulation. Therefore, considering the total differences in simulations resulting from the scattering of input data for the substrate material, interlayer and ceramic layer, it should be stated that it is possible to obtain virtually any simulation result.
PL
Symulacje numeryczne rozkładu temperatury oraz stanu naprężeń w powłokowych barierach cieplnych w kontekście różnic w wartościach danych wejściowych – warstwa pośrednia i materiał podłoża W artykule przedstawiono wyniki badań nad wpływem różnic w wartościach danych wejściowych dotyczących materiałów używanych w systemach powłokowych barier cieplnych na wyniki symulacji metodą elementów skończonych (MES) rozkładu temperatury i naprężeń zastępczych Hubera-Misesa. Skupiono się na parametrach materiałowych charakteryzujących warstwę pośrednią oraz materiał podłoża. Wykazano, że tak jak w przypadku warstwy ceramicznej 8YSZ dane charakteryzują się bardzo szerokim rozrzutem wartości. Stwierdzono, że wyniki symulacji z użyciem tych danych różnią się znacznie od siebie w zależności od przyjętego punktu odniesienia, to znaczy od tego, czy do symulacji przyjęto wartości minimalne, maksymalne, medianę czy średnią. Uwzględniając zatem sumaryczne różnice w symulacjach wynikające z rozrzutu danych wejściowych dla materiału podłoża, międzywarstwy oraz warstwy ceramicznej, należy stwierdzić, że możliwe jest uzyskanie praktycznie dowolnego wyniku symulacji.
Rocznik
Tom
Strony
288--294
Opis fizyczny
Bibliogr. 65 poz., tab., rys., wykr.
Twórcy
autor
  • Silesian University of Technology, Department of Materials Technology, Material Innovation Laboratory, Katowice, Poland
Bibliografia
  • [1] N.P. Padture, M. Gell, E.H. Jordan. 2002. “Thermal Barrier Coatings for Gas-Turbine Engine Applications.” Science 296(5566): 280–284. DOI: 10.1126/science.1068609.
  • [2] H. E. Evans. 2011. “Oxidation Failure of TBC Systems: An Assessment of Mechanisms.” Surface and Coatings Technology 206(7): 1512–1521. DOI: 10.1016/j.surfcoat.2011.05.053.
  • [3] M. Białas. 2008. “Finite Element Analysis of Stress Distribution in Thermal Barrier Coatings.” Surface and Coatings Technology 202(24): 6002–6010. DOI: 10.1016/j.surfcoat.2008.06.178.
  • [4] E. P. Busso, Z. Q. Qian, M. P. Taylor, H. E. Evans. 2009. “The Influence of Bondcoat and Topcoat Mechanical Properties on Stress Development in Thermal Barrier Coating Systems.” Acta Materialia 57(8): 2349–2361. DOI: 10.1016/j.actamat.2009.01.017.
  • [5] A. Jasik. 2023. “Numerical Simulations of Temperature and Stress Distribution in Thermal Barrier Coatings in the Context of Differences in Input Data Values – External Ceramic Layer.” Ochrona przed Korozją 66(8): 247– 252. DOI: 10.15199/40.2023.8.4.
  • [6] www.specialmetals.com (access: 17.07.2023).
  • [7] H. S. Zhang, H. C. Sun, X. G. Chen. 2012. “Effect of Top-Layer Thickness on Residual Stresses of Plasma-Spraying Sm2Zr2O7/YSZ Thermal Barrier Coatings.” Advanced Materials Research 347–353: 40–43. DOI: 10.4028/ www.scientific.net/amr.347-353.40.
  • [8] K. Slámečka, P. Skalka, J. Pokluda, L. Čelko. 2016. “Finite Element Simulation of Stresses in a Plasma-Sprayed Thermal Barrier Coating with an Irregular Top-Coat/Bond-Coat Interface.” Surface and Coatings Technology 304: 574–583. DOI: 10.1016/j.surfcoat.2016.07.066.
  • [9] P. Bednarz, R. Herzog, E. Trunova, R. W. Steinbrech, H. Echsler, W. J. Quadakkers, F. Schubert, L. Singheiser. 2005. Stress Distribution in APS‐TBCs under Thermal Cycling Loading Conditions. In: D. Zhu and K. Plucknett (eds). Advances in Ceramic Coatings and Ceramic-Metal Systems: Ceramic Engineering and Science Proceedings. Westerville, Ohio: The American Ceramic Society. DOI: 10.1002/9780470291238.ch9.
  • [10] A. Liu, Y. Wei. 2003. “Finite Element Analysis of Anti-Spallation Thermal Barrier Coatings.” Surface and Coatings Technology 165(2): 154–162. DOI: 10.1016/S0257-8972(02)00743-0.
  • [11] M. Abbas, H.J. Hasham, Y. Baig. 2016. “Numerical Parametric Analysis of Bond Coat Thickness Effect on Residual Stresses in Zirconia-Based Thermal Barrier Coatings.” High-Temperature Materials and Processes 35(2): 201–207. DOI: 10.1515/htmp-2014-0185.
  • [12] M. Abbas, L. Guo, H. Guo. 2013. “Evaluation of Stress Distribution and Failure Mechanism in Lanthanum–Titanium–Aluminum Oxides Thermal Barrier Coatings.” Ceramics International 39(5): 5103–5111. DOI: 10.1016/j. ceramint.2012.12.006.
  • [13] M. Abbas, H. Guo, M. R. Shahid. 2013. “Comparative Study on Effect of Oxide Thickness on Stress Distribution of Traditional and Nanostructured Zirconia Coating Systems.” Ceramics International 39(1): 475-481. DOI: 10.1016/j.ceramint.2012.06.051.
  • [14] N. Nayebpashaee, E. Etemadi, B. Mohammad Sadeghi, S. H. Seyedein. 2021. “Experimental and Numerical Study of the Thermo-Mechanical Behavior of Plasma-Sprayed Gadolinium and Yitria Zirconate-Based Thermal Barrier Coatings.” Advanced Ceramics Progress 7(4): 36–51. DOI: 10.30501/acp.2022.322563.1078.
  • [15] F. Yang, J.C.M. Li (eds). 2008. Micro and Nano Mechanical Testing of Materials and Devices. New York: Springer.
  • [16] A.D. Johari, S. Mohd Yunus, S. Husin. 2020. “Comparison on Thermal Resistance Performance of YSZ and Rare-Earth GZ Multilayer Thermal Barrier Coating at 1250°C Gas Turbine Combustor Liner.” Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 52(2): 123–128.
  • [17] P. Zhang, Y. Feng, Y. Li, W. Pan, P. Zong, M. Huang, Y. Han, Z. Yang, H. Chen, Q. Gong, C. Wan. 2020. “Thermal and Mechanical Properties of Ferroelastic RENbO4 (RE = Nd, Sm, Gd, Dy, Er, Yb) for Thermal Barrier Coatings.” Scripta Materialia 180: 51–56. DOI: 10.1016/j.scriptamat.2020.01.026.
  • [18] C.H. Hsueh, P.F. Becher, E.R. Fuller, S.A. Langer, W.C. Carter.1999. “Surface-Roughness Induced Residual Stresses in Thermal Barrier Coatings: Computer Simulations.” Materials Science Forum 308–311: 442–449. DOI: 10.4028/www.scientific.net/MSF.308-311.442.
  • [19] M. Ranjbar-Far, J. Absi, G. Mariaux, F. Dubois. 2010. “Simulation of the Effect of Material Properties and Interface Roughness on the Stress Distribution in Thermal Barrier Coatings Using Finite Element Method.” Materials and Design 31(2): 772–781. DOI: 10.1016/j.matdes.2009.08.005.
  • [20] K. Sfar, J. Aktaa, D. Munz. 2002. “Numerical Investigation of Residual Stress Fields and Crack Behavior in TBC Systems.” Materials Science and Engineering: A 333(1–2): 351–360. DOI: 10.1016/S0921-5093(01)01859-7.
  • [21] G. Kerkhoff, R. Vaßen, D. Stöver. 1999. Numerically Calculated Thermal, Stresses in Thermal Barrier Coatings on Cylindrical Substrates. In: E. Lugscheider, P.A. Kammer (eds). United Thermal Spray Conference (ITSC 1999). Materials Park, Ohio: ASM International.
  • [22] K. Sfar, J. Aktaa, D. Munz. 2000. Analysing the Failure Behaviour of Thermal Barrier Coatings Using the Finite Element Method. In: T. Jessen, E. Ustundag (eds). 24th Annual Conference on Composites, Advanced Ceramics, Materials, and Structures: A: Ceramic Engineering and Science Proceedings. Westerville, Ohio: The American Ceramic Society. DOI: 10.1002/9780470294628.ch23.
  • [23] H. Zimmermann. 1992. Elastische Eigenschaften verschiedener keramischer Materialien. Kernforschungszentrum Karlsruhe: KfK 5092.
  • [24] H. Zimmermann. 1994. Thermoschock- und Temperaturwechselverhalten verschiedener keramischer Materialien. Kernforschungszentrum Karlsruhe: KfK 5303.
  • [25] R. Kowalewski. 1997. Thermomechanische Ermüdung einer beschichteten, stengelkristallinen Nickelbasis-Superlegierung. Düsseldorf: VDI Verlag.
  • [26] W. Mannsmann. 1995. Keramische Wärmedämmschichtsysteme: Eigenschaften und Verhalten unter mechanischer, thermischer und thermomechanischer Beanspruchung. PhD thesis. Karlsruhe: Fakultät für Maschinenbau der Universität Karlsruhe.
  • [27] M. Alaya. 1997. Bewertung und Optimierung von Konzepten zur Verbesserung des Einsatzverhaltens von ZrO2-Wärmedämmschichtsystemen. PhD thesis. Karlsruhe: Fakultät für Maschinenbau der Universität Karlsruhe.
  • [28] A. Burov, E. Fedorova. 2020. “Modeling of Interface Failure in a Thermal Barrier Coating System on Ni-Based Superalloys.” Engineering Failure Analysis 123: 105320. DOI: 10.1016/j.engfailanal.2021.105320.
  • [29] J. Cheng, E. H. Jordan, B. Barber, M. Gell. 1998. “Thermal/Residual Stress in an Electron Beam Physical Vapor Deposited Thermal Barrier Coating System.” Acta Materialia 46(16): 5839–5850. DOI: 10.1016/S1359- 6454(98)00230-4.
  • [30] J.B. Wachtman, W.R. Cannon, M. Matthewson. 1996. Mechanical Properties of Ceramics. New York: John Wiley and Sons.
  • [31] R.V. Hillery, B.H. Pilsner, R.L. McKnight, T.S. Cook, M.S. Hartle. 1988. Thermal Barrier Coating Life Prediction Model Development: Final Report. NASA Contract Report 180807.
  • [32] G. Simmons, H. Wang. 1971. Single Crystal Elastic Constants and Calculated Aggregate Properties: AHandbook. Cambridge, Massachusetts: MIT Press.
  • [33] E.A. Brandes, G.B. Broook (eds). 1983. Smithells Metals Reference Book. London: Butterworth.
  • [34] R.W. Clark, J. D. Whittenberger. 1984. Thermal Expansion of Binary CoAl, FeAl, and NiAl Alloys. In: T. A. Hahn (ed.). Thermal Expansion 8. New York: Plenum Press.
  • [35] Y.S. Touloukian, R.K. Kirby, R.E. Taylor, P.D. Desai. 1975. Thermal Expansion: Metallic Elements and Alloys. Thermophysical Properties of Matter: The TPRC Data Series, vol. 12. New York: Plenum.
  • [36] Y.C. Zhou, T. Hashida. 2001. “Coupled Effects of Temperature Gradient and Oxidation on Thermal Stress in Thermal Barrier Coating System.” International Journal of Solids and Structures 38(24–25): 4235–4264. DOI: 10.1016/ S0020-7683(00)00309-7.
  • [37] J.S. Eliseev, V.A. Poklad, O.G. Ospennikova, V.N. Larionov, A.V. Logunov, I. M. Razumovskij. 2008. Composition of Heat-Resistant Nickel Alloy (Versions). Russia Patent: RU 2353691.
  • [38] K. An, K.S. Ravichandran, R.E. Dutton, S.L. Semiatin. 1999. “Microstructure, Texture, and Thermal Conductivity of Single‐Layer and Multilayer Thermal Barrier Coatings of Y2O3‐Stabilized ZrO2 and Al2O3 Made by Physical Vapor Deposition.” Journal of the American Ceramic Society 82: 399–406. DOI: 10.1111/j.1551-2916.1999.tb20076.x.
  • [39] B.T.F. Chung, M.M. Kermani, M.J. Braun, J.Padovan, R.C. Hendricks. 1985. “Heat Transfer in Thermal Barrier Coated Rods with Circumferential and Radial Temperature Gradients.” Journal of Engineering for Gas Turbines and Power 107(1): 135–141. DOI: 10.1115/1.3239673.
  • [40] D. Hasselman, L.F. Johnson, L.D. Bentsen, R. Syed, H.L. Lee, M.V. Swain. 1987. “Thermal Diffusivity and Conductivity of Dense Polycrystalline ZrO2 Ceramics: A Survey.” American Ceramic Society Bulletin 66(5): 799–806.
  • [41] J.C. Glandus, V. Tranchand. 1993. Thermal Shock by Water Quench: Numerical Simulation. In: G. A. Schneider, G. Petzow (eds). Thermal Shock and Thermal Fatigue Behavior of Advanced Ceramics. Dordrecht: Kluwer Academic Publishers.
  • [42] M. Rohde. 1997. “Measuring and Modeling Thermal Conductivity in Thin Films and Microstructures.” High Temperatures – High Pressures 29(2): 171– 176.
  • [43] R.E. Taylor. 1998. “Thermal Conductivity Determinations of Thermal Barrier Coatings.” Materials Science and Engineering: A 45(2): 160–167.
  • [44] X. Chen, J. Price, J. Ahmad. 2004. Measuring and Modeling Residual Stresses in Air Plasma Spray Thermal Barrier Coatings. In: E. Lara-Curzio, M.J. Readey. 28th International Conference on Advanced Ceramics and Composites: B. Westerville, Ohio: The American Ceramic Society.
  • [45] Y. Zhang, Y. Wang, K. Yin, H. Xu. 2004. “Finite Element Analysis of Residual Stresses in Zirconia Thermal Barrier Coatings on Superalloy.” Journal of the Ceramic Society of Japan, Supplement 112: S1122–S1124. DOI: 10.14852/ jcersjsuppl.112.0.S1122.0.
  • [46] L. Wu, J. Zhu, H. Xie. 2014. “Numerical and Experimental Investigation of Residual Stress in Thermal Barrier Coatings during APS Process.” Journal of Thermal Spray Technology 23: 653–665. DOI: 10.1007/s11666-014-0063-8.
  • [47] Z. Gan, H.W. Ng, A. Devasenapathi. 2004. “Deposition-Induced Residual Stresses in Plasma-Sprayed Coatings.” Surface and Coatings Technology 187(2–3): 307–319. DOI: 10.1016/j.surfcoat.2004.02.010.
  • [48] M. Mohammadi, E. Poursaeidi. 2019. “Failure Mechanisms and Their Finite Element Modeling of Air Plasma Spray Thermal Barrier Coatings: A Review.” Advanced Materials and Novel Coatings 7(27): 1937–1953. DOI: /amnc.2019.7.27.6.
  • [49] G. Qian, T. Nakamura, C.C. Berndt. 1998. “Effects of Thermal Gradient and Residual Stresses on Thermal Barrier Coating Fracture.” Mechanics of Materials 27(2): 91–110. DOI: 10.1016/S0167-6636(97)00042-2.
  • [50] A. Bhattacharyya, D. Maurice. 2019. “Residual Stresses in Functionally Graded Thermal Barrier Coatings.” Mechanics of Materials 129: 50–56. DOI: 10.1016/j.mechmat.2018.11.002.
  • [51] W.G. Mao, Y.C. Zhou, L. Yang, X.H. Yu. 2006. “Modeling of Residual Stresses Variation with Thermal Cycling in Thermal Barrier Coatings.” Mechanics of Materials 38(12): 1118–1127. DOI: 10.1016/j.mechmat.2006.01.002.
  • [52] C.H. Hsueh, E.R. Fuller. 2000. “Analytical Modeling of Oxide Thickness Effects on Residual Stresses in Thermal Barrier Coatings.” Scripta Materialia 42(8): 781–787. DOI: 10.1016/S1359-6462(99)00430-3.
  • [53] S. Q. Nusier, G. M. Newaz. 1998. “Transient Residual Stresses in Thermal Barrier Coatings: Analytical and Numerical Results.” Journal of Applied Mechanics 65(2): 346–353. DOI: 10.1115/1.2789061.
  • [54] P. Bengtsson, C. Persson. 1997. “Modelled and Measured Residual Stresses in Plasma Sprayed Thermal Barrier Coatings.” Surface and Coatings Technology 92(1–2): 78–86. DOI: 10.1016/S0257-8972(97)00082-0.
  • [55] J.T. DeMasi, K.D. Sheffler, M. Ortiz. 1989. Thermal Barrier Coating Life Prediction Model Development. NASA Contractor Report 182230.
  • [56] R. A. Miller. 1990. Assessment of Fundamental Materials Needs for Thick Thermal Barrier Coatings (TTBC’s) for Truck Diesel Engines. NASA TM-103130: DOE/NASA/21794-1.
  • [57] S.J. Schneider (ed.). 1991. Engineering Materials Handbook: Ceramics and Glasses. Almere: ASM International.
  • [58] C.T. Sims, N.S. Stoloff, W.C. Hagel (eds). 1987. Superalloys II: High-Temperature Materials for Aerospace and Industrial Power. New York: John Wiley and Sons.
  • [59] ASM Handbook Committee. 1990. Properties and Selection: Irons, Steels, and High-Performance Alloys. ASM International.
  • [60] V. Teixeira, M. Andritschky, W. Fischer, H.P. Buchkremer, D. Stöver. 1999. “Effects of Deposition Temperature and Thermal Cycling on Residual Stress State in Zirconia-Based Thermal Barrier Coatings.” Surface and Coatings Technology 120–121: 103–111. DOI: 10.1016/S0257-8972(99)00341-2.
  • [61] H. Chen, Y. Liu, Y. Gao, S. Tao, H. Luo. 2010. “Design, Preparation, and Characterization of Graded YSZ/La2Zr2O7 Thermal Barrier Coatings.” Journal of the American Ceramic Society 93: 1732–1740. DOI: 10.1111/j.1551-2916.2010.03610.x.
  • [62] R.X. Hu, S.R. Liao, H.S. Zhang, Y. Wei. 2011. “Effect of Substrate Conditions on Residual Stress of Plasma-Spraying Sm2Zr2O7 Thermal Barrier Coatings.” Applied Mechanics and Materials 84–85: 548–551. DOI: 10.4028/www.scientific.net/amm.84-85.548.
  • [63] T.W. Clyne, S.C. Gill. 1996. “Residual Stresses in Thermal Spray Coatings and Their Effect on Interfacial Adhesion: AReview of Recent Work.” Journal of Thermal Spray Technology 5: 401–418. DOI: 10.1007/BF02645271.
  • [64] P. Skalka, K. Slámečka, J. Pokluda, L. Čelko. 2018. “Finite Element Simulation of Stresses in a Plasma-Sprayed Thermal Barrier Coating with a Crack at the TGO/Bond-Coat Interface.” Surface and Coatings Technology 337: 321–334. 10.1016/j.surfcoat.2018.01.024.
  • [65] H. Jahed, R. Shirazi. 2001. “Loading and Unloading Behaviour of a Thermoplastic Disc.” International Journal of Pressure Vessels and Piping 78(9): 637–645. DOI: 10.1016/S0308-0161(01)00079-5
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bde88ee3-86b2-40a6-a4b4-1fcf4d6f5779
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.