PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Computational evaluation of the limiting thrust of the peripheral thruster taking into account the propeller blade yield stress and the thrust breakdown due to cavitation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The work presented in this article is related to the performance of an alternative design for the side thruster for ships, referred to as a peripheral thruster. Unlike the standard side thruster design, which uses the tunnel across the hull structure, the peripheral thruster consists of two separate devices mounted on two sides of the hull, with retracTable ducted propellers. The computational analyses presented here focus on evaluation of the maximum thrust achievable by this alternative design for the side thruster for a specified propeller diameter of 250 mm. Two limiting factors were considered: the strength of the propeller material, and the drop in thrust due to excessive cavitation. The analyses were carried out using STAR-CCM+ solver, and involved both a flow model (RANS FVM) and a solid stress model (FEM). The article focuses on the sensitivity of the results to the settings of the computational models, which is a key issue for this type of analysis due to its complexity.
Słowa kluczowe
EN
Rocznik
Tom
Strony
106--114
Opis fizyczny
Bibliogr. 15 poz., rys., tab.
Twórcy
  • Baltic Wind Solutions, Gdynia, Poland
  • Institute of Naval Architecture, Gdańsk University of Technology, Gdańsk , Poland
  • Institute of Naval Architecture, Gdańsk University of Technology, Gdańsk , Poland
  • MTPWIND Sp. z o.o., Puławy, Poland
  • MTPWIND Sp. z o.o., Puławy, Poland
Bibliografia
  • 1. Wikipedia, Voith Schneider Propeller, 09.05.2024. Retrieved from https://en.wikipedia.org/wiki/Voith_Schneider_Propeller.
  • 2. Wikipedia, Pump-jet, 09.05.2024, Retrieved from https://en.wikipedia.org/wiki/Pump-jet.
  • 3. Kongsberg, Super silent tunnel thruster, 09.05.2024, Retrieved from https://www.kongsberg.com/maritime/products/propulsors-and-propulsion-systems/thrusters/super-silent-tunnel-thruster/.
  • 4. Wikipedia, Rim-driven thruster, 09.05.2024, Retrieved from https://en.wikipedia.org/wiki/Rim-driven_thruster.
  • 5. Det Norske Veritas, “Assessment of station keeping capability of dynamic positioning vessels”. Standard No. DNV-ST-0111, December 2021.
  • 6. Maritime Advanced Research Centre CTO S.A. Experimental analysis of the hydrodynamic characteristics of the peripheral thruster. Technical Report, March 2022.
  • 7. Huang Y., Chen L., Chen P., Negenborn RR, van Gelder PHAJM. Ship collision avoidance methods: State-of-the-art. Safety Science 2020, vol. 121, pp. 451–473. ISSN 0925-7535. https://doi.org/10.1016/j.ssci.2019.09.018.
  • 8. Lindau JW, Boger DA, Medvitz RB, Kunz RF. Propeller cavitation breakdown analysis. J Fluids Eng. 2005, vol. 127, pp. 995–1002. doi: 10.1115/1.1988343.
  • 9. Rehman S, Wajiha S, Paboeuf J. A comparison of different fluid-structure interaction analysis techniques for the marine propeller. ASME 2021 Power Conference. doi: 10.1115/POWER2021-64369.
  • 10. Savio L, Sileo L, As SK. A comparison of physical and numerical modeling of homogenous isotropic propeller blades. J Mar SciEng 2020, vol. 8, p. 21. doi: 10.3390/jmse8010021.
  • 11. Schneider T, Hu Y, Gao X, Dumas J, Zorin D, Panozzo D. A large scale comparison of tetrahedral and hexahedral elements for solving elliptic PDEs with finite element ACM Trans. Graph. 41, 3, Article 23 (June 2022). https://doi.org/10.1145/3508372.
  • 12. Shayanpoor A, Hajivand A, Moore M. Hydroelastic analysis of composite marine propeller basis fluid-structure interaction (FSI), Int J Marit Technol, 2020, vol. 13, pp. 51–59.
  • 13. Young YL. Time-dependent hydroelastic analysis of cavitating propulsors. Journal of Fluids and Structures 2007, vol. 23, no. 2, pp. 269–295. ISSN 0889-9746. https://doi.org/10.1016/j.jfluidstructs.2006.09.003.
  • 14. Magionesi F, Dubbioso G, Muscari R. Fluid–structure interaction of a marine rudder at incidence in the wake of a propeller. Phys Fluids 2024, vol. 36. doi: 10.1063/5.0201867.
  • 15. Schnerr GH, Sauer J. Physical and numerical modeling of unsteady cavitation dynamics. Fourth International Conference on Multiphase Flow, 2001, ICMF New Orleans.
Uwagi
1. W Pdf błędnie podane imię dla autora: Paweł Dymarski. Poprawne imię wpisane zgodnie z danymi z ORCID.
2. Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bde7ce46-1351-4da3-89e3-b806f5e6c555
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.