PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Testing properties of sewage sludge for energy use

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The properties of sewage sludge in the context of their further energy use have been examined. For this purpose, 34 samples of sewage sludge from municipal sewage treatment plants from the area of Lower Silesia with a capacity higher than the 2000 population equivalent (PE) with separate sludge management were tested. As part of the study, tests were made to determine the technological usefulness of fuels and their elemental composition, i.e., technical analyses and elemental analyses. The obtained results show a large diversity of basic physicochemical properties of the tested sewage sludge. The share of volatile components important for energetic use ranged from 38.4 to 59.8 wt. %. The content of carbon (C) in the mass of tested sewage sludge ranged from 22.4 to 39.2 wt. %, which means that they have a lower content of elemental carbon compared to solid fuels. The higher heating value (HHV) of sewage sludge ranged from 9.3 to 17.4 MJ/kg dry mass.
Rocznik
Strony
61--73
Opis fizyczny
Bibliogr. 31 poz., tab., rys.
Twórcy
autor
  • Wrocław University of Science and Technology, Chair of Energy Technologies, Turbines and Modelling of Thermal and Fluid Flow Processes
  • The Institute of Environmental Protection, National Research Institute (IEP-NRI), Department of Wastewater Technology in Wrocław
  • Wrocław University of Science and Technology, Chair of Energy Technologies, Turbines and Modelling of Thermal and Fluid Flow Processes
  • The Institute of Environmental Protection, National Research Institute (IEP-NRI), Department of Wastewater Technology in Wrocław
Bibliografia
  • [1] DAIGGER G.T., Wastewater management in the 21st century, J. Environ. Eng. – ASCE, 2007, 133, 671.
  • [2] DAIGGER G.T., Evolving urban water and residuals management paradigms: water reclamation and reuse, decentralization, and resource recovery, Water Environ. Res., 2009, 81, 809.
  • [3] Regulation of the Minister of Economy of 15 July 2015 on the acceptance of waste for landfilling, Dz.U. 2015, poz. 1277 (in Polish).
  • [4] BIXIO D., THOEYE C., DE KONING J., JOKSIMOVIC D., SAVIC D., WINTGENS T., MELIN T., Wastewater reuse in Europe, Desalination, 2006, 187, 89.
  • [5] SPINOSA L., VESILIND P.A., Sludge into biosolids, processing disposal and utilization, IWA Publishing, London 2001.
  • [6] KELESSIDIS A., STASINAKIS A.S., Comparative study of the methods used for treatment and final disposal of sewage sludge in European countries, Waste Manage., 2012, 32, 1186.
  • [7] MULLOY K.B., Sewage workers. Toxic hazards and health effects, Occup. Med., 2001, 16, 23.
  • [8] KUSZMIDER G., KOLONKO I., SUSCHKA J., Volatile organic compounds in municipal wastewater, Arch. Environ. Prot., 1997, 23, 91 (in Polish).
  • [9] Organic contaminants in sewage sludge for agricultural use, European Commission, 2001.
  • [10] Pollutants in urban wastewater and sewage sludge, Final report, ICON, IC Consultants, Ltd., London 2001.
  • [11] JANOSZKA B., BODZEK D., BODZEK M., Occurrence and determination of polycyclic aromatic hydrocarbons and their derivatives in selected sewage, Arch. Environ. Prot., 1997, 23, 55 (in Polish).
  • [12] THORN J., BEIJER L., JONSSON T., RYLANDER R., Measurement strategies for the determination of airborne bacterial endotoxin in sewage treatment plants, Ann. Occup. Hyg., 2002, 46 (6), 549.
  • [13] JOSEPH G., Combustible dusts. A serious industrial hazard, J. Hazard. Mater., 2007, 142, 589.
  • [14] American Institute of Chemical Engineers, Is sugar an explosion hazard?, J. Fail. Anal. Prev., 2008, 8, 311.
  • [15] FODOR Z., KLEMEŠ J.J., Waste as alternative fuel. Minimising emissions and effluents by advanced design, Proc. Saf. Environ., 2012, 90, 263.
  • [16] ECKHOFF R.K., Dust explosions in the process industries, Butterworth–Heinemann, Oxford 2003.
  • [17] HARRISON E.Z., OAKES S.R., HYSELL M., HAY A., Organic chemicals in sewage sludges, Sci. Total Environ., 2006, 367, 481.
  • [18] TCHOBANOGLOUS G., BURTON F.I., STENSEL H.D., Wastewater engineering. Treatment and reuse, 4th Ed., McGraw-Hill, 2003.
  • [19] FUENTES M.J., FONT R., GÓMEZ-RICO M.F., MOLTÓ J., Multivariant statistical analysis of PCDD/FS in sewage sludges from different areas of the Valencian Community (Spain), Chemosphere, 2007, 67, 1423.
  • [20] GARCÍA-DELGADO M., RODRÍGUEZ-CRUZ M., LORENZO L., ARIENZO M., SÁNCHEZ-MARTÍN M., Seasonal and time variability of heavy metal content and of its chemical forms in sewage sludges from different wastewater treatment plants, Sci. Total Environ., 2007, 382, 82.
  • [21] BIEŃ J.B., Sewage sludge, Theory and Practice, Wydawnictwo Politechniki Częstochowskiej, Częstochowa 2002 (in Polish).
  • [22] Regulation of the Minister of Environment of 6 February 2015 r. on municipal sewage sludge, Dz.U., 2015, poz. 257 (in Polish).
  • [23] Environmental Protection Inspection, Physicochemical and biological reference methods for testing municipal sewage sludge, Warsaw 2003 (in Polish).
  • [24] KHAN A.A., DE JONG W., JANSENS P.J., SPLIETHOFF H., Biomass combustion in fluidized bed boilers. Potential problems and remedies, Fuel Proc. Techn., 2009, 90, 21.
  • [25] RYBAK W., MOROŃ W., FERENS W., Dust ignition characteristics of different coal ranks, biomass and solid waste, Fuel, 2019, 237, 606.
  • [26] STELMACH S., WASIELEWSKI R., Co-combustion of dried sewage sludge and coal in a pulverized coal boiler, J. Mater. Cycles Waste Manage., 2008, 10, 110.
  • [27] WANG C.X., WANG X.H., JIANG X.D., LI F.Y., LEI Y.Y., LIN Q.Z., The thermal behavior and kinetics of co-combustion between sewage sludge and wheat straw, Fuel Proc. Techn., 2019, 189, 1.
  • [28] ZHANGLIANG H., FEI Q., HUI W., RUOYU L., DEZHI S., Odor assessment of NH3 and volatile sulfide compounds in a full-scale municipal sludge aerobic composting plant, Biores. Techn., 2019, 282, 447.
  • [29] HEIN K.R.G., BEMTGEN J.M., EU clean coal technology. Co-combustion of coal and biomass, Fuel Proc. Techn., 1998, 54, 159.
  • [30] IFRF solid fuel database, http://www.ifrf.net/page/ research/solid- fuel- characterization
  • [31] HUPA M., KARLSTRÖM O., VAINIO E., Biomass combustion technology development. It is all about chemical details, Proc. the Combustion Institute, 2017, 36, 113.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bde68080-e632-4dcc-8e86-eabbc87f9b80
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.