PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of water-air heat transfer on the spread of thermal pollution in rivers

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
While working on practical problems related to the spread of thermal pollution in rivers, we face difficulties related to the collection of necessary data. However, we would like to predict the increase in water temperature at the best accuracy to forecast possible threats to the environment. What level of accuracy is necessary and which processes that influence the water temperature change have to be taken into account are usually problematic. Those problems, with special stress on water–air heat exchange in practical applications in the so-called mid-field region in rivers, which is very important for the environmental impact assessment, constitute the main subject of the present article. The article also summarises the existing knowledge and practice on water–air heat exchange calculations in practical applications.
Czasopismo
Rocznik
Strony
597--619
Opis fizyczny
Bibliogr. 111 poz.
Twórcy
  • Institute of Geophysics Polish Academy of Sciences, Warsaw, Poland
Bibliografia
  • 1. Abramowitz G, Pouyanné L, Ajami H (2012) On the information content of surface meteorology for downward atmospheric long-wave radiation synthesis. Geophys Res Lett 39:L04808. https://doi.org/10.1029/2011GL050726
  • 2. Ahsan AQ, Blumberg AF (1999) Three-dimensional hydrothermal model of Onondaga Lake, New York. J Hydraul Eng 125:912–923. https://doi.org/10.1061/(ASCE)0733-9429(1999)125:9(912)
  • 3. Alados I, Foyo-Moreno I, Alados-Arboledas L (2012) Estimation of downwelling longwave irradiance under all-sky conditions. Int J Climatol 32:781–793. https://doi.org/10.1002/joc.2307
  • 4. Alados-Arboledas L, Jimenez J (1988) Day-night differences in the effective emissivity from clear skies. Bound-Layer Meteorol 45:93–101. https://doi.org/10.1007/BF00120817
  • 5. Alcântara EH, Stech JL, Lorenzzetti JA, Bonnet MP, Casamitjana X, Assireu AT, Novo EMLdM (2010) Remote sensing of water surface temperature and heat flux over a tropical hydroelectric reservoir. Remote Sens Environ 114:2651–2665. https://doi.org/10.1016/j.rse.2010.06.002
  • 6. Alduchov OA, Eskridge RE (1996) Improved magnus form approximation of saturation vapor pressure. J Appl Meteorol 35:601–609. https://doi.org/10.1175/1520-0450(1996)035%3c0601:IMFAOS%3e2.0.CO;2
  • 7. Ali S, Ghosh NC, Singh R (2008) Evaluating best evaporation estimate model for water surface evaporation in semi-arid region. India Hydrol Process 22:1093–1106. https://doi.org/10.1002/hyp.6664
  • 8. Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration-guidelines for computing crop water requirements—FAO Irrigation and drainage paper 56, vol 300. Rome
  • 9. Anderson ER (1954) Energy-budget studies Waterloss investigations: Lake Hefner studies. Technical Report, US Geological Survey professional paper, vol 269, pp 71–119
  • 10. Ångström AK (1915) A study of the radiation of the atmosphere: based upon observations of the nocturnal radiation during expeditions to Algeria and to California, vol 65. Smithsonian Institution, Washington
  • 11. Arifin RR, James SC, de Alwis Pitts DA, Hamlet AF, Sharma A, Fernando HJ (2016) Simulating the thermal behavior in Lake Ontario using EFDC. J Great Lakes Res 42:511–523. https://doi.org/10.1016/j.jglr.2016.03.011
  • 12. Benyahya L, Caissie D, El-Jabi N, Satish MG (2010) Comparison of microclimate vs. remote meteorological data and results applied to a water temperature model (Miramichi River, Canada). J Hydrol 380:247–259. https://doi.org/10.1016/j.jhydrol.2009.10.039
  • 13. Berdahl P, Fromberg R (1982) The thermal radiance of clear skies. Sol Energy 29:299–314. https://doi.org/10.1016/0038-092X(82)90245-6
  • 14. Berdahl P, Martin M (1984) Emissivity of clear skies. Sol Energy 32:663–664. https://doi.org/10.1016/0038-092X(84)90144-0
  • 15. Berger X, Buriot D, Garnier F (1984) About the equivalent radiative temperature for clear skies. Sol Energy 32:725–733. https://doi.org/10.1016/0038-092X(84)90247-0
  • 16. Bolton D (1980) The computation of equivalent potential temperature. Mon Weather Rev 108:1046–1053. https://doi.org/10.1175/1520-0493(1980)108%3c1046:TCOEPT%3e2.0.CO;2
  • 17. Boltzmann L (1884) Ableitung des Stefan’schen Gesetzes, betreffend die Abhängigkeit der Wärmestrahlung von der Temperatur aus der electromagnetischen Lichttheorie. Ann Phys 258:291–294. https://doi.org/10.1002/andp.18842580616
  • 18. Bowen IS (1926) The ratio of heat losses by conduction and by evaporation from any water surface. Phys Rev 27:779. https://doi.org/10.1103/PhysRev.27.779
  • 19. Brady DK, Graves WL, Geyer JC (1969) Surface heat exchange at power plant cooling lakes. Edison Electric Institute publication, Washington
  • 20. Brett JR (1956) Some principles in the thermal requirements of fishes. Q Rev Biol 31:75–87. https://doi.org/10.1086/401257
  • 21. Brewster MQ (1992) Thermal radiative transfer and properties. Wiley, New York
  • 22. Brunt D (1932) Notes on radiation in the atmosphere. I. Q J R Meteorol Soc 58:389–420. https://doi.org/10.1002/qj.49705824704
  • 23. Brutsaert W (1975) On a derivable formula for long-wave radiation from clear skies. Water Resour Res 11:742–744. https://doi.org/10.1029/WR011i005p00742
  • 24. Caissie D (2006) The thermal regime of rivers: a review. Freshw Biol 51:1389–1406. https://doi.org/10.1111/j.1365-2427.2006.01597.x
  • 25. Caissie D, Satish MG, El-Jabi N (2007) Predicting water temperatures using a deterministic model: application on Miramichi River catchments (New Brunswick, Canada). J Hydrol 336:303–315. https://doi.org/10.1016/j.jhydrol.2007.01.008
  • 26. Carmona F, Rivas R, Caselles V (2014) Estimation of daytime downward longwave radiation under clear and cloudy skies conditions over a sub-humid region. Theoret Appl Climatol 115:281–295. https://doi.org/10.1007/s00704-013-0891-3
  • 27. Coutant CC (1999) Perspectives on temperature in the pacific northwest’s fresh waters. Environmental Protection Agency, United States, Washington. https://doi.org/10.2172/9042
  • 28. Chapra SC (2008) Surface water-quality modeling. Waveland press, Long Grove
  • 29. Choi M, Jacobs JM, Kustas WP (2008) Assessment of clear and cloudy sky parameterizations for daily downwelling longwave radiation over different land surfaces in Florida, USA. Geophys Res Lett. https://doi.org/10.1029/2008GL035731
  • 30. Crawford TM, Duchon CE (1999) An improved parameterization for estimating effective atmospheric emissivity for use in calculating daytime downwelling longwave radiation. J Appl Meteorol 38:474–480. https://doi.org/10.1175/1520-0450(1999)038%3c0474:AIPFEE%3e2.0.CO;2
  • 31. Currie RJ, Bennett WA, Beitinger TL (1998) Critical thermal minima and maxima of three freshwater game-fish species acclimated to constant temperatures. Environ Biol Fishes 51:187–200. https://doi.org/10.1023/a:1007447417546
  • 32. Czernuszenko W (1990) Dispersion of pollutants in flowing surface waters. Encycl Fluid Mech 10:119–168
  • 33. Dalton J (1802) On evaporation. Essay III in: Experimental essays on the constitution of mixed gases; on the force of steam or vapour from water or other liquids in different temperatures both in a Torrecellian vacuum and in air; on evaporation; and on the expansion of gases by heat. Mem Proc Lit Phil Soc Manchester 5:574–594
  • 34. Deacon E (1970) The derivation of Swinbank’s long-wave radiation formula. Q J R Meteorol Soc 96:313–319. https://doi.org/10.1002/qj.49709640814
  • 35. Deas ML, Lowney CL (2000) Water temperature modeling review: central valley. California Water Modeling Forum
  • 36. Duarte HF, Dias NL, Maggiotto SR (2006) Assessing daytime downward longwave radiation estimates for clear and cloudy skies in Southern Brazil. Agric For Meteorol 139:171–181. https://doi.org/10.1016/j.agrformet.2006.06.008
  • 37. Edinger JE (1974) Heat exchange and transport in the environment. Rep Electr Power Res Inst 14:125
  • 38. Elsasser WM (1942) Heat transfer by infrared radiation in the atmosphere. Harvard Meteor Studies 6:107
  • 39. Endrizzi S, Tubino M, Zolezzi G (2002) Lateral mixing in meandering channels: a theoretical approach. In: Bousmar D, Zech Y (eds) Proceedings river flow 2000, International conference on fluvial hydraulics Louvain-La-Neuve Belgium. Swets & Zeitlinger, LisseGoogle Scholar
  • 40. Evans EC, McGregor GR, Petts GE (1998) River energy budgets with special reference to river bed processes. Hydrol Process 12:575–595. https://doi.org/10.1002/(SICI)1099-1085(19980330)12:4%3c575:AID-HYP595%3e3.0.CO;2-Y
  • 41. FAO (1990) Annex V. FAO Penman-Monteith formula. Food and Agriculture Organization of the United Nations, Rome
  • 42. Flerchinger G, Xaio W, Marks D, Sauer T, Yu Q (2009) Comparison of algorithms for incoming atmospheric long-wave radiation. Water Resour Res 45:1–13. https://doi.org/10.1029/2008WR007394
  • 43. Garner G, Malcolm IA, Sadler JP, Hannah DM (2014) What causes cooling water temperature gradients in a forested stream reach? Hydrol Earth Syst Sci 18:5361–5376. https://doi.org/10.5194/hess-18-5361-2014
  • 44. Garner G, Malcolm IA, Sadler JP, Hannah DM (2017) The role of riparian vegetation density, channel orientation and water velocity in determining river temperature dynamics. J Hydrol 553:471–485. https://doi.org/10.1016/j.jhydrol.2017.03.024
  • 45. Glose A, Lautz LK, Baker EA (2017) Stream heat budget modeling with HFLUX: model development, evaluation, and applications across contrasting sites and seasons. Environ Model Softw 92:213–228. https://doi.org/10.1016/j.envsoft.2017.02.021
  • 46. Guymer I (1998) Longitudinal dispersion in sinuous channel with changes in shape. J Hydraul Eng 124:33–40. https://doi.org/10.1061/(ASCE)0733-9429(1998)124:1(33)
  • 47. Hannah DM, Malcolm IA, Soulsby C, Youngson AF (2004) Heat exchanges and temperatures within a salmon spawning stream in the Cairngorms, Scotland: seasonal and sub-seasonal dynamics. River Res Appl 20:635–652. https://doi.org/10.1002/rra.771
  • 48. Harbeck GE (1958) Water-loss investigations: Lake Mead studies, vol 298. US Government Printing Office, Washington
  • 49. Heitor A, Biga A, Rosa R (1991) Thermal radiation components of the energy balance at the ground. Agric For Meteorol 54:29–48. https://doi.org/10.1016/0168-1923(91)90039-S
  • 50. Hester ET, Doyle MW (2011) Human impacts to river temperature and their effects on biological processes: a quantitative synthesis1. JAWRA J Am Water Resour Assoc 47:571–587. https://doi.org/10.1111/j.1752-1688.2011.00525.x
  • 51. Hughes D, Kingston D, Todd M (2011) Uncertainty in water resources availability in the Okavango River basin as a result of climate change. Hydrol Earth Syst Sci 15:931–941. https://doi.org/10.5194/hess-15-931-2011
  • 52. Idso SB (1981) A set of equations for full spectrum and 8-to 14-μm and 10.5-to 12.5-μm thermal radiation from cloudless skies. Water Resour Res 17:295–304. https://doi.org/10.1029/WR017i002p00295
  • 53. Idso SB, Jackson RD (1969) Thermal radiation from the atmosphere. J Geophys Res 74:5397–5403. https://doi.org/10.1029/JC074i023p05397
  • 54. Iziomon MG, Mayer H, Matzarakis A (2003) Downward atmospheric longwave irradiance under clear and cloudy skies: measurement and parameterization. J Atmos Solar Terr Phys 65:1107–1116. https://doi.org/10.1016/j.jastp.2003.07.007
  • 55. Ji ZG (2008) Hydrodynamics and water quality: modeling rivers, lakes, and estuaries. Wiley, New York
  • 56. Jiménez JI, Alados-Arboledas L, Castro-Díez Y, Ballester G (1987) On the estimation of long-wave radiation flux from clear skies. Theor Appl Climatol 38:37–42. https://doi.org/10.1007/bf00866251
  • 57. Jirka GH, Weitbrecht V (2005) Mixing models for water quality management in rivers: continuous and instantaneous pollutant releases. In: Czernuszenko W, Rowiński PM (eds) Water quality hazards and dispersion of pollutants. Springer, Boston, pp 1–34. https://doi.org/10.1007/0-387-23322-9_1
  • 58. Johnson SL (2004) Factors influencing stream temperatures in small streams: substrate effects and a shading experiment. Can J Fish Aquat Sci 61:913–923. https://doi.org/10.1139/F04-040
  • 59. Joss J, Resele G (1987) Mathematical modelling of the heat exchange between a river and the atmosphere. In: Beniston M, Pielke RA (eds) Interactions between energy transformations and atmospheric phenomena. A survey of recent research. Springer, Dordrecht, pp 27–40. https://doi.org/10.1007/978-94-017-1911-7_3
  • 60. Kalinowska MB, Rowinski PM (2012) Uncertainty in computations of the spread of warm water in a river—lessons from Environmental Impact Assessment case study. Hydrol Earth Syst Sci 16:4177–4190. https://doi.org/10.5194/hess-16-4177-2012
  • 61. Kalinowska MB, Rowinski PM (2015) Thermal pollution in rivers-modelling of the spread of thermal plumes. In: Rowinski P, Radecki-Pawlik A (eds) Rivers-physical, fluvial and environmental processes GeoPlanet-Earth and Planetary Sciences. Springer, Cham, pp 591–613. https://doi.org/10.1007/978-3-319-17719-9_24
  • 62. Kalinowska MB, Rowiński PM (2008) Numerical solutions of two-dimensional mass transport equation in flowing surface waters, vol 404(E-8). Institute of Geophysics, Polish Academy of Sciences, Warsaw
  • 63. Kalinowska MB, Rowinski PM, Kubrak J, Miroslaw-Swiatek D (2012) Scenarios of the spread of a waste heat discharge in a river—Vistula River case study. Acta Geophys 60:214–231. https://doi.org/10.2478/s11600-011-0045-x
  • 64. Kalinowska MB, Mrokowska MM, Rowiński PM (2018) Sensitivity analysis for the water-air heat exchange term. In: Kalinowska MB, Mrokowska MM, Rowiński PM (eds) Free surface flows and transport processes. Springer, Cham, pp 219–233
  • 65. Katsaros KB, McMurdie LA, Lind RJ, DeVault JE (1985) Albedo of a water surface, spectral variation, effects of atmospheric transmittance, sun angle and wind speed. J Geophys Res Oceans 90:7313–7321. https://doi.org/10.1029/JC090iC04p07313
  • 66. Khatib T, Elmenreich W (2015) A model for hourly solar radiation data generation from daily solar radiation data using a generalized regression artificial neural network. Int J Photoenergy 968024:1–13. https://doi.org/10.1155/2015/968024
  • 67. Kjaersgaard JH, Plauborg F, Hansen S (2007) Comparison of models for calculating daytime long-wave irradiance using long term data set. Agric For Meteorol 143:49–63. https://doi.org/10.1016/j.agrformet.2006.11.007
  • 68. Lawrence MG (2005) The relationship between relative humidity and the dewpoint temperature in moist air: a simple conversion and applications. Bull Am Meteor Soc 86:225–234. https://doi.org/10.1175/bams-86-2-225
  • 69. Leach J, Moore R (2010) Above-stream microclimate and stream surface energy exchanges in a wildfire-disturbed riparian zone. Hydrol Process 24:2369–2381. https://doi.org/10.1002/hyp.7639
  • 70. Lee TY et al (2012) Modeling the effects of riparian planting strategies on stream temperature: increasing suitable habitat for endangered Formosan Landlocked Salmon in Shei-Pa National Park. Taiwan Hydrol Process 26:3635–3644. https://doi.org/10.1002/hyp.8440
  • 71. Lhomme J-P, Vacher J-J, Rocheteau A (2007) Estimating downward long-wave radiation on the Andean Altiplano. Agric For Meteorol 145:139–148. https://doi.org/10.1016/j.agrformet.2007.04.007
  • 72. Li G, Jackson CR, Kraseski KA (2012) Modeled riparian stream shading: agreement with field measurements and sensitivity to riparian conditions. J Hydrol 428–429:142–151. https://doi.org/10.1016/j.jhydrol.2012.01.032
  • 73. Li M, Jiang Y, Coimbra CF (2017) On the determination of atmospheric longwave irradiance under all-sky conditions. Sol Energy 144:40–48. https://doi.org/10.1016/j.solener.2017.01.006
  • 74. Magnus G (1844) Versuche über die Spannkräfte des Wasserdampfs. Ann Phys 137:225–247. https://doi.org/10.1002/andp.18441370202
  • 75. Magnusson J, Jonas T, Kirchner JW (2012) Temperature dynamics of a proglacial stream: identifying dominant energy balance components and inferring spatially integrated hydraulic geometry. Water Resour Res 48:12. https://doi.org/10.1029/2011WR011378
  • 76. Marciano Jr J, Harbeck G (1952) Mass transfer studies. Water-loss investigations: volume 1, Lake Hefner Studies, US Navy Electronics Laboratory. Technical Report 327
  • 77. Marks D, Dozier J (1979) A clear-sky longwave radiation model for remote alpine areas. Arch Meteorol Geophys Bioklimatol Ser B 27:159–187. https://doi.org/10.1007/BF02243741
  • 78. Marthews TR, Malhi Y, Iwata H (2012) Calculating downward longwave radiation under clear and cloudy conditions over a tropical lowland forest site: an evaluation of model schemes for hourly data. Theor Appl Climatol 107:461–477. https://doi.org/10.1007/s00704-011-0486-9
  • 79. McJannet DL, Webster IT, Cook FJ (2012) An area-dependent wind function for estimating open water evaporation using land-based meteorological data. Environ Model Softw 31:76–83. https://doi.org/10.1016/j.envsoft.2011.11.017
  • 80. Meyer AF (1928) The elements of hydrology, vol 7. Wiley, New York
  • 81. Miller AW, Street RL (1972) Surface heat transfer from a hot spring fed lake. Technical report (Stanford University, Department of Civil Engineering), vol 160. Stanford, California: Department of Civil Engineering, Stanford University
  • 82. Monteith J (1961) An empirical method for estimating long-wave radiation exchanges in the British Isles. Q J R Meteorol Soc 87:171–179. https://doi.org/10.1002/qj.49708737206
  • 83. Murray JD (2002) Mathematical biology I. An introduction, vol 17. Interdisciplinary applied mathematics, 3rd edn. Springer, New York. https://doi.org/10.1007/b98868
  • 84. Piotrowski A, Rowinski P, Napiórkowski J (2006) Assessment of longitudinal dispersion coefficient by means of different neural networks. In: 7th international conference on hydroinformatics, HIC
  • 85. Prata A (1996) A new long-wave formula for estimating downward clear-sky radiation at the surface. Q J R Meteorol Soc 122:1127–1151. https://doi.org/10.1002/qj.49712253306
  • 86. Rajwa A, Rowiński PM, Bialik RJ, Karpiński M (2014) Stream diurnal profiles of dissolved oxygen—case studies. In 3rd IAHR Europe Congress, Porto
  • 87. Rajwa-Kuligiewicz A, Bialik RJ, Rowiński PM (2015) Dissolved oxygen and water temperature dynamics in lowland rivers over various timescales. J Hydrol Hydromech 63:353–363. https://doi.org/10.1515/johh-2015-0041
  • 88. Raudkivi A (1979) Hydrology: an observed introduction to hydrological processes and modeling. Pergamon Press, New York
  • 89. Rosenberry DO, Winter TC, Buso DC, Likens GE (2007) Comparison of 15 evaporation methods applied to a small mountain lake in the northeastern USA. J Hydrol 340:149–166. https://doi.org/10.1016/j.jhydrol.2007.03.018
  • 90. Rowinski PM, Kalinowska MB (2006) Admissible and inadmissible simplifications of pollution transport equations. In: Ferreira RML, Alves CTL, Leal GAB, Cardoso AH (eds) River flow 2006, vols 1 and 2, pp 199–208
  • 91. Rowiński PM, Piotrowski A, Napiórkowski JJ (2005) Are artificial neural network techniques relevant for the estimation of longitudinal dispersion coefficient in rivers? Hydrol Sci J 50:175–187. https://doi.org/10.1623/hysj.50.1.175.56339
  • 92. Rutherford J (1994) River mixing. Wiley, New York
  • 93. Rutherford JC, Macaskill JB, Williams BL (1993) Natural water temperature variations in the lower Waikato River, New Zealand. NZ J Mar Freshwat Res 27:71–85. https://doi.org/10.1080/00288330.1993.9516547
  • 94. Ryan PJ (1973) An analytical and experimental study of transient cooling pond behavior, Ralph M. Parsons Laboratory for Water Resources and Hydrodynamics, Massachusetts Institute of Technology, Cambridge
  • 95. Santos CAC, Silva BB, Rao TVR, Satyamurty P, Manzi AO (2011) Downward longwave radiation estimates for clear-sky conditions over northeast. Braz Rev Bras Meteorol 26:443–450. https://doi.org/10.1590/S0102-77862011000300010
  • 96. Satterlund DR (1979) An improved equation for estimating long-wave radiation from the atmosphere. Water Resour Res 15:1649–1650. https://doi.org/10.1029/WR015i006p01649
  • 97. Sellers WD (1965) Physical climatology. University of Chicago Press, Chicago
  • 98. Sinokrot BA, Stefan HG (1993) Stream temperature dynamics: measurements and modeling. Water Resour Res 29:2299–2312. https://doi.org/10.1029/93WR00540
  • 99. Sridhar V, Elliott RL (2002) On the development of a simple downwelling longwave radiation scheme. Agric For Meteorol 112:237–243. https://doi.org/10.1016/S0168-1923(02)00129-6
  • 100. Swinbank WC (1963) Long-wave radiation from clear skies. Q J R Meteorol Soc 89:339–348. https://doi.org/10.1002/qj.49708938105
  • 101. Szymkiewicz R (2010) Numerical modeling in open channel hydraulics. Springer Science & Business Media, Berlin
  • 102. Tan SBK, Shuy EB, Chua LHC (2007) Modelling hourly and daily open-water evaporation rates in areas with an equatorial climate. Hydrol Process 21:486–499. https://doi.org/10.1002/hyp.6251
  • 103. Tang R, Etzion Y, Meir IA (2004) Estimates of clear night sky emissivity in the Negev Highlands. Israel Energy Convers Manag 45:1831–1843. https://doi.org/10.1016/j.enconman.2003.09.033
  • 104. Trabert W (1896) Neue Beobachtungenûber Verdampfungsgeschwindigkeiten. [New Observations on Evaporation Rates.]. Meteorol Z 13:261–263. https://doi.org/10.4236/jwarp.2017.912086
  • 105. Vall S, Castell A (2017) Radiative cooling as low-grade energy source: a literature review. Renew Sustain Energy Rev 77:803–820. https://doi.org/10.1016/j.rser.2017.04.010
  • 106. Wallis SG, Manson JR (2004) Methods for predicting dispersion coefficients in rivers. In: Proceedings of the Institution of Civil Engineers-Water Management, vol 3. Thomas Telford Ltd, pp 131–141
  • 107. Webb BW, Zhang Y (1999) Water temperatures and heat budgets in Dorset chalk water courses. Hydrol Process 13:309–321. https://doi.org/10.1002/(SICI)1099-1085(19990228)13:3%3c309:AID-HYP740%3e3.0.CO;2-7
  • 108. Webb BW, Hannah DM, Moore RD, Brown LE, Nobilis F (2008) Recent advances in stream and river temperature research. Hydrol Process 22:902–918. https://doi.org/10.1002/hyp.6994
  • 109. Winter TC, Rosenberry DO, Sturrock AM (1995) Evaluation of 11 equations for determining evaporation for a small lake in the north central United States. Water Resour Res 31:983–993. https://doi.org/10.1029/94WR02537
  • 110. Wunderlich WO (1972) Heat and mass transfer between a water surface and the atmosphere. Norris, Tenn: Tennessee Valley Authority, Office of Natural Resources and Economic Development, Division of Air and Water Resources, Water Systems Development Branch
  • 111. Xin Z, Kinouchi T (2013) Analysis of stream temperature and heat budget in an urban river under strong anthropogenic influences. J Hydrol 489:16–25. https://doi.org/10.1016/j.jhydrol.2013.02.048
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bde53c1b-d2cd-4be9-9577-168eb6f7d1a2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.