Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Fracture mechanics is the bridge in understanding the failure behaviour of plain concrete beams are subjected to different loading conditions. Fly ash and ground granulated blast furnace slag (GGBS) are widely used supplementary cementitious materials (SCMs) that enhance concrete performance while reducing environmental impact. Hence, the present study investigates fracture energy of notched plain blended concrete beams with fly ash and ground granulated blast furnace slag (GGBS) with varying lengths, a/d ratios and varying notch positions. A series of experimental tests, from fresh concrete tests to hardened concrete tests including three-point bending are conducted to evaluate the fracture Energy on 3 different sized beams with varying depth as well as notch depth and notch position. The results highlight the influence of geometric variations on fracture behaviour. It is seen that length of the beam, depth of the beam along with the varying notch depth & position of notch contribute to the variation of fracture energy.
Wydawca
Rocznik
Tom
Strony
438--447
Opis fizyczny
Bibliogr. 26 poz., fig., tab.
Twórcy
autor
- Department of Civil Engineering, Jain College of Engineering,Ts Nagar, Hunchannati Cross, Machche, India
- Visveswaraya Technological University, Belagavi, Karnataka, India
autor
- Department of Civil Engineering, Jain College of Engineering,Ts Nagar, Hunchannati Cross, Machche, India
- Visveswaraya Technological University, Belagavi, Karnataka, India
Bibliografia
- 1. Smith, J., Brown, C., & Adams, T. (2015). The impact of fly ash on fresh concrete properties. Concrete Research Journal, 18(3), 78–85.
- 2. Patel, R., & Kumar, S. (2017). Workability enhancement through GGBS in concrete mixtures. Materials and Structures, 50(7), 345–353.
- 3. Jones, M., & Lee, S. (2016). Long-term strength development in fly ash concrete. International Journal of Civil Engineering, 19(6), 412–420.
- 4. Roy, T., Bhandari, A., & Sen, P. (2018). Strength properties of fly ash and GGBS blended concrete. Advanced Concrete Studies, 15(2), 98–110.
- 5. Gupta, R., Singh, K., & Malik, A. (2019). Durability characteristics of blended concrete. Journal of Concrete Research, 21(4), 233–245.
- 6. Yang, X., & Zhao, L. (2020). Freeze-thaw resistance in fly ash and GGBS blended concrete. Cold Climate Concrete Research, 7(5), 321–330.
- 7. Thomas, M. (2019). Environmental impact of SCMs in concrete. Green Concrete Advances, 8(4), 200–215.
- 8. Singh, M., & Verma, R. (2021). Sustainability in concrete using GGBS: A review. Environmental Materials Review, 10(1), 56–64.
- 9. Bažant, Z. P., & Planas, J. (1998). Fracture and size effect in concrete and other quasi-brittle materials. CRC Press.
- 10. Carpinteri, A., Bocca, P., & Valente, S. (2010). Experimental analysis of fracture mechanisms in concrete. Engineering Fracture Mechanics, 77(6), 987–1003.
- 11. RILEM. (2004). Recommendation for determining fracture energy of concrete. Materials and Structures, 37(10), 569–576.
- 12. Lee, J., & Wong, K. (2018). Fracture properties of plain concrete with fly ash and GGBS. Concrete Research Letters, 9(3), 245–253.
- 13. Silva, M., Das, A., & Chatterjee, S. (2018). Fracture properties of plain concrete with SCMs. Materials Research Journal, 25(2), 115–127.
- 14. Jirásek, M., & Bažant, Z. P. (2002). Inelastic analysis of structures. John Wiley & Sons, Materials and Structures, 16(93), 155–177. https://doi.org/10.1007/BF02472495.
- 15. Shah, S. P., Swartz, S. E., & Ouyang, C. (1995). Fracture mechanics of concrete: Applications of fracture mechanics to concrete, rock, and other quasi-brittle materials. John Wiley & Sons.
- 16. Zhao, L., & Li, X. (2021). Fracture mechanics in reinforced concrete: An overview. Structural Engineering Advances, 18(2), 110–120.
- 17. Xu, Q., & Zhang, Y. (2022). Empirical modelling of Gf and K relationships in concrete. Journal of Civil Engineering Materials, 21(4), 355–368.
- 18. Wang, Z., & Huang, R. (2020). Aggregate influence on fracture energy in concrete beams. Journal of Building Materials Research, 14(6), 245–259.
- 19. Bažant, Z. P., & Oh, B. H. (1983). Crack band theory for fracture of concrete. Materials and Structures, 16(3), 155–177. https://doi.org/10.1007/BF02486267.
- 20. Ulfkjaer, J. P., Hansen, L. P., Qvist, S., & Madsen, S. H. (1996). Fracture energy of plain concrete beams at different rates of loading. WIT Transactions on The Built Environment, 25, 11–20. https://doi.org/10.2495/SUSI960381.
- 21. Meng, W., Yao, Y., Mobasher, B., & Khayat, K. H. (2017). Effects of loading rate and notch-to-depth ratio of notched beams on flexural performance of ultra-high-performance concrete. Cement and Concrete Composites, 83, 349–359. https://doi.org/10.1016/j.cemconcomp.2017.07.026.
- 22. Tada, H., Paris, P. C., & Irwin, G. R. (2000). The stress analysis of cracks handbook (3rd ed.). ASME Press.
- 23. Meng, W., Yao, Y., Mobasher, B., & Khayat, K. H. (2017). Effects of loading rate and notch-to-depth ratio of notched beams on flexural performance of ultra-high-performance concrete. Cement and Concrete Composites, 84, 162–173. https://doi.org/10.1016/j.cemconcomp.2017.07.026.
- 24. Hillerborg, A., Modéer, M., & Petersson, P. E. (1976). Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cement and Concrete Research, 6(6), 773–782.
- 25. Bureau of Indian Standards. (2019). IS 10262: Concrete mix proportioning – Guidelines. Bureau of Indian Standards.
- 26. IS 8112:1989 – Specification for 43 grade ordinary Portland cement. Bureau of Indian Standards.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bde53158-8c88-4299-8d2a-244b725c8007
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.