PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Oxidative Aging Characterization of Pyro-Oil Modified Binders Using Fourier Transform Infrared Spectroscopy

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The numerous uses for plastics in various industries have led to an increase in its manufacturing on a global scale over time. The accumulation of plastic waste is a direct result of the daily rise in plastic demand. One of the effective and trending ways of reducing the impact of plastic waste on the environment is to pyrolyze it and use the oil obtained from it as fuel for power generation, heating, extraction of chemicals, or as an asphalt binder modifier. In this study, an attempt was made for the modification of asphalt binder with the oil obtained from plastic waste pyrolysis known as pyro-oil, and to analyse aging properties of the modified binder. This paper deals with the modification of VG30 binder with pyro-oil obtained from High Density Polyethylene (HDPE) plastic waste and the analysing the effect of aging on the modified binders. Pyro-oil is yielded from the pyrolysis process of HDPE at about 750°C. The modified binders were prepared by adding 1%, 2%, and 3% pyro-oil by total weight of VG30. The effect of aging for the unmodified and modified binders was analyzed using fourier transform infrared (FTIR) spectroscopy. The binders were short term aged and the changes in their chemical functionalities before and after aging were analyzed. Results of the FTIR test were used to calculate functional group indices for evaluating the aging characteristics of the modified binders. It was observed that binder chemistry is influenced by aging.
Twórcy
  • Civil Engineering Department, College of Engineering, Pune, Maharashtra, 411005, India
  • Civil Engineering Department, College of Engineering, Pune, Maharashtra, 411005, India
  • Civil Engineering Department, College of Engineering, Pune, Maharashtra, 411005, India
Bibliografia
  • 1. M. de F.A. de Sá, V. de F.C. Lins, V.M.D. Pasa, L.F.M. Leite, Amazonas de Sá Araujo M.F., Cunha Lins V.F., Duarte Pasa V.M., Leite L.F.M. Weathering aging of modified asphalt binders. Fuel Process. Technol. 2013; 115: 19–25.
  • 2. Omairey E.L., Zhang Y., Gu F., Ma T., Hu P., Luo R. Rheological and fatigue characterisation of bitumen modified by anti-ageing compounds. Constr. Build. Mater. 2020; 265: 120307.
  • 3. Zhu J., Birgisson B., Kringos N. Polymer modification of bitumen: Advances and challenges. Eur. Polym. J. 2014; 54: 18–38. https://doi.org/10.1016/j.eurpolymj.2014.02.005.
  • 4. Mills-Beale J., You Z., Fini E., Zada B., Lee C.H., Yap Y.K. Aging influence on rheology properties of petroleum-based asphalt modified with biobinder. J. Mater. Civ. Eng. 2014; 26: 358–366. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000712.
  • 5. Airey G.D., Mohammed M.H., Fichter C. Rheological characteristics of synthetic road binders. Fuel. 2008; 87: 1763–1775.
  • 6. Li R., Xiao F., Amirkhanian S., You Z., Huang J. Developments of nano materials and technologies on asphalt materials–A review. Constr. Build. Mater. 2017; 143: 633–648.
  • 7. Zhu J., Birgisson B., Kringos N. Polymer modification of bitumen: Advances and challenges. Eur.Polym. J. 2014; 54: 18–38.
  • 8. Lei Y., Wang H., Fini E.H., You Z., Yang X., GaoJ., Dong S., Jiang G. Evaluation of the effect of bio-oil on the high-temperature performance of rubber modified asphalt. Constr. Build. Mater. 2018; 191: 692–701. https://doi.org/10.1016/j.conbuildmat.2018.10.064.
  • 9. Önal E., Uzun B.B., Pütün A.E. Bio-oil production via co-pyrolysis of almond shell as biomass and high density polyethylene. Energy Convers. Manag. 2014; 78: 704–710.
  • 10. Rajmohan K.S., Yadav H., Vaishnavi S., Gopinath M., Varjani S. Perspectives on bio-oil recovery from plastic waste, in: Curr. Dev. Biotechnol. Bioeng., Elsevier. 2020; 459–480.
  • 11. Xu J., Pei J., Cai J., Liu T., Wen Y. Performance improvement and aging property of oil/SBS modified asphalt. Constr. Build. Mater. 2021; 300: 123735.
  • 12. Hu X., Gholizadeh M. Progress of the applicationsof bio-oil, Renew. Sustain. Energy Rev. 2020; 134: 110124.
  • 13. Hadole H.P., Suryawanshi S.D., Khapne V.A., Ranadive M.S. Moisture damage resistance of shortterm aged pyro-oil–modified bitumen using rollin thin film oven by surface free energy approach. J. Mater. Civ. Eng. 2021; 33: 04021268. https://doi.org/10.1061/(asce)mt.1943-5533.0003872.
  • 14. Kulkarni S.B., Ranadive M.S. Modified cutback as tack coat by application of pyro-oil obtained from municipal plastic waste: experimental approach. J.Mater. Civ. Eng. 2020; 32: 04020100. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003079
  • 15. Nivitha M.R., Prasad E., Krishnan J.M. Ageing in modified bitumen using FTIR spectroscopy. Int. J. Pavement Eng. 2016; 17: 565–577. https://doi.org/10.1080/10298436.2015.1007230.
  • 16. Zhang R., Wang H., Jiang X., You Z., Yang X., Ye M. Thermal Storage stability of bio-oil modified asphalt. J. Mater. Civ. Eng. 2018; 30: 1–9. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002237.
  • 17. Krasodomski W., Skibińska A., Żółty M. Thermal Oxidation Stability of Lubricating Greases. Adv. Sci. Technol. Res. J. 2020; 14.
  • 18. Yang X., You Z., Mills-Beale J. Asphalt Binders Blended with a high percentage of biobinders: Aging mechanism using FTIR and rheology. J.Mater. Civ. Eng. 2015; 27: 04014157. https://doi.org/10.1061/(asce)mt.1943-5533.0001117.
  • 19. Lamontagne J., Dumas P., Mouillet V., Kister J. Comparison by Fourier transform infrared (FTIR) spectroscopy of different ageing techniques: Application to road bitumens. Fuel. 2001; 80483–488. https://doi.org/10.1016/S0016-2361(00)00121-6.
  • 20. Hadole H.P., Ranadive M.S. Analysis of short-term ageing mechanism of pyro-oil modified bitumen compared to VG30 based on FTIR spectroscopy, in: Proc. Fifth Int. Conf. Transp. Res. Gr. India, Springer. 2022; 413–424.
  • 21. Hadole H.P., Ranadive M.S. FTIR analysis for ageing of HDPE pyro-oil modified bitumen, in: Recent Trends Constr. Technol. Manag. Springer. 2023; 1311–1328.
  • 22. Kulkarni S.B., Ranadive M.S. A feasibility study towards the application of municipal waste pyrolysis oil in bituminous pavement, in: Springer, Cham. 2021; 130–147. https://doi.org/10.1007/978-3-030-79638-9_11.
  • 23. Bhagat N.T., Ranadive M.S. Review on mechanisms of bitumen modification: process and variables, in: Recent Trends Constr. Technol. Manag., Springer. 2023; 1185–1192.
  • 24. A. D2872-22, Standard test method for effect of heat and air on a moving film of asphalt (rolling thin film oven test). 1995; ASTM D2872 88.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bde3dfdd-995c-47b9-b675-3b3fca967296
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.