PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A new six-DoF parallel mechanism for captive model test

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In order to obtain the hydrodynamic coefficients that can save cost and meet the accuracy requirements, a new hydrodynamic test platform based on a 6DoF (six degrees of freedom) parallel mechanism is proposed in this paper. The test platform can drive the ship to move in six degrees of freedom. By using this experimental platform, the corresponding hydrodynamic coefficients can be measured. Firstly, the structure of the new device is introduced. The working principle of the model is deduced based on the mathematical model. Then the hydrodynamic coefficients of a test ship model of a KELC tank ship with a scale of 1:150 are measured and 8 typical hydrodynamic coefficients are obtained. Finally, the measured data are compared with the value of a real ship. The deviation is less than 10% which meets the technical requirements of the practical project. The efficiency of measuring the hydrodynamic coefficients of physical models of ships and offshore structures is improved by the device. The method of measuring the hydrodynamic coefficients by using the proposed platform provides a certain reference for predicting the hydrodynamic performance of ships and offshore structures.
Rocznik
Tom
Strony
4--15
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
autor
  • School of Naval Architecture and Ocean Engineering Huazhong University of Science and Technology Luoyu Road 1037# Hongshan Distinct 430074 Wuhan, China
autor
  • School of Naval Architecture and Ocean Engineering Huazhong University of Science and Technology Luoyu Road 1037# Hongshan Distinct 430074 Wuhan, China
autor
  • School of Naval Architecture and Ocean Engineering Huazhong University of Science and Technology Luoyu Road 1037# Hongshan Distinct 430074 Wuhan, China
autor
  • School of Naval Architecture and Ocean Engineering Huazhong University of Science and Technology Luoyu Road 1037# Hongshan Distinct 430074 Wuhan, China
Bibliografia
  • 1. Muscari R., Dubbioso G., Viviani M., Mascio A. D. (2017): Analysis of the asymmetric behavior of propeller–ruder system of twin screw ships by CFD. Ocean Engineering, 143, 269–281.
  • 2. Lidtke A. D., Turnock S. R., Downes J. (2017): Hydrodynamic design of underwater gliders using k-kL-ω RANS transition model. IEEE Journal of Oceanic Engineering, 43(2), 356–368.
  • 3. Chen J., Wei J., Yang L. (2018): Hydrodynamic optimization of appendages on ROPAX by using CFD and model tests. Ship Building of China, 59(2), 33–41.
  • 4. Jianglong S., Haiwen T., Yongnian C., De X., Jiajian Z. (2016): A study on trim optimization for a container ship based on effects due to resistance. Journal of Ship Research, 60(1), 30–47.
  • 5. Haiwen T., Yunfei Y. et al. (2018): A modified admiralty coefficient for estimating power curves in EEDI calculations. Ocean Engineering, 150, 309–317.
  • 6. Chuang Z., Steen S. (2013): Speed loss of a vessel sailing in oblique waves. Ocean Engineering, 64, 88–99.
  • 7. Lee P.-M., Jun B.-H., Kim K.-H., Lee J.-H., Aoki T., Hyakudome T. (2007: Simulation of an inertial acoustic navigation system with range aiding for an autonomous underwater vehicle. IEEE Journal of Oceanic Engineering, 32(2), 327–345.
  • 8. Li B., Su T.-C. (2016): Nonlinear heading control of an autonomous underwater vehicle with internal actuators. Ocean Engineering, 125, 103–112.
  • 9. Kim J.-Y., Kim K.-H., Choi H.-S., Seong W.-J., Lee K.-Y. (2002): Estimation of hydrodynamic coefficients for an AUV using nonlinear observers. IEEE Journal of Oceanic Engineering, 27(4), 830–840.
  • 10. Mansoorzadeh S., Javanmard E. (2014): An investigation of free surface effects on drag and lift coefficients of an autonomous underwater vehicle (AUV) using computational and experimental fluid dynamics methods. Journal of Fluids & Structures, 51(1), 161–171.
  • 11. Gala F. L., Dubbioso G., Ortolani F., et al. (2012): Preliminary evaluation of control and manoeuvring qualities for the AUTODROP-UUV vehicle. IFAC Proceedings Volumes, 45(27), 132–137.
  • 12. Li G. (2011): Numerical and experimental research on hydrodynamic characters of shuttle submersible. Harbin Engineering University, Harbin, 2011.
  • 13. Avila J. P. J., Adamowski J. C. (2011): Experimental evaluation of the hydrodynamic coefficients of a ROV through Morison’s equation. Ocean Engineering, 38(17), 2162–2170.
  • 14. Xu F., Zou Z. J., Yin J. C., et al. (2013): Identification modeling of underwater vehicles’ nonlinear dynamics based on support vector machines. Ocean Engineering, 67, 68–76.
  • 15. Zhao J.-X. (2011): The hydrodynamic performance calculation and motion simulation of an AUV with appendages. Harbin Engineering University, Harbin.
  • 16. Pang Y.-J., Wang Q.-Y., Li W.-P. (2017): Model test study of influence of propeller and its rotation on hydrodynamics of submarine maneuverability. Journal of Harbin Engineering University, 38(1), 109–114.
  • 17. Kijima K., Nakiri Y. (1990): On a numerical simulation for predicting of ship manoeuvring performance. 19th International Towing Tank Conference, Madrid, Spain, Vol. 2, 559–568.
  • 18. Maekawa K., Shuto C., Karasuno K., Nonaka K. (1999): Estimation of added mass coefficients mx’,my’ by using CFD through oblique towing test with constant acceleration. Journal of Kansai Society of Naval Architects Japan, 232, 55–61.
  • 19. Kijima K., Nakari Y., Furukawa Y. (2000): On a prediction method for ship manouevrability. International Workshop on Ship Manoeuvrability at the Hamburg Ship Model Basin, Hamburg, Germany, pp. 536–543.
  • 20. Petersen, J. B., Lauridsen, B. (2000): Prediction of hydrodynamic forces from a database of manoeuvring derivatives. MARSIM 2000, Orlando, FL, USA, pp. 401–420.
  • 21. Yang C.-F., Wu B.-S., Shen H.-C. (2006): Analysis of experiment validation for full- ship maneuverability hydrodynamic forces prediction. Journal of Ship Mechanics, 10(4), 559–568.
  • 22. Gao T., Wang Y.-X., Pang Y.-J., Chen Q.-L., Tang Y.-G. (2018): A time-efficient CFD approach for hydrodynamic coefficient determination and model simplification of submarine. Ocean Engineering, 154, 16–26.
  • 23. Stewart D. (1966): A platform with six degrees of freedom. Aircraft Engineering and Aerospace Technology, 38(4), 30–35.
  • 24. Yurt S. N., Ozkol I., Hajiyev C. (2004): Error analysis and motion determination of a flight simulator. Aircraft Engineering and Aerospace Technology, 76(2), 185–192.
  • 25. Landry S. J., Jacko J. (2012): Pilot Procedure-Following Behavior during Closely Spaced Parallel Approaches. International Journal of Human-Computer Interaction, 28(2), 131–139.
  • 26. Phoemsapthawee S., Le Boulluec M. (2013): A potential flow based flight simulator for an underwater glider. Journal of Marine Science and Application, 12(1), 112–121.
  • 27. Kim G. S. (2007): Design of a six-axis wrist force/moment sensor using FEM and its fabrication for an intelligent robot. Sensors and Actuators A Physical, 133(1), 27–34.
  • 28. Nekrasov V: (2019): Mean-Square Non-Local Stability of Ship in Storm Conditions of Operation. Polish Maritime Research, 26(4), 6-15.
  • 29. Kun D., Yunbo L. (2019): Manoeuvring Prediction of KVLCC2 with Hydrodynamic Derivatives Generated by a Virtual Captive Model Test. Polish Maritime Research, 26(4), 16-26.
  • 30. CSSRC (2018): Ship test report for KELC tank ship. Report (Wuhan China), pp. 17–24.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bde39ab3-553a-4756-9e84-2a994d9042ef
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.