PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical Simulation of Air Distribution in a Wide Chute

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Desirable conditions of airflow should be provided for spillway chute aerators in two-phase air-water flow, especially in large-width chutes. There is no general approach to determine air entrainment, concentration distribution, and submergence along a chute introduced by an aerator shaft. The two-phase air-water modeling of Gavoshan dam in Iran as a case study of chute flow, its aerator, and the characteristics of flow into the cavity formed below the jet have been numerically investigated, and the results obtained have been validated against the laboratory experiments. The hydraulic parameters of the cavity and aerator shaft were determined to evaluate their performance and emphasize the importance of a proper aerator design. Sections with a greater distance from the bottom of the chute exhibit higher pressure magnitudes, while the mean air concentration values in the cavity are smaller in sections close to a ramp. Higher water discharge, lower pressure head in sections near the bottom of the cavity, and lower air concentration in sections near the ramp into the cavity increase the probability of cavitation occurrence.
Rocznik
Strony
73--88
Opis fizyczny
Bibliogr. 23 poz., rys., tab., wykr.
Twórcy
  • Department of Environment, Land and Infrastructure Engineering (DIATI), Politecnico di Torino, Turin, Italy
Bibliografia
  • Aydin M. C., Emiroglu M. E. (2013) Determination of capacity of labyrinth side weir by CFD, Flow Measurement and Instrumentation, 29, 1–8, https://doi.org/10.1016/j.flowmeasinst.2012.09.008.
  • Aydin M. C. (2012) CFD simulation of free-surface flow over triangular labyrinth side weir, Advances in Engineering Software, 45 (1), 159–166, https://doi.org/10.1016/j.advengsoft.2011.09.006.
  • Chanson H. (1989) Flow Downstream of an Aerator, Aerator spacing, Journal of Hydraulic Research, 27 (4), 519–536, https://doi.org/10.1080/00221688909499127.
  • Chanson H. (1990) Study of Air Demand on Spillway Aerator, Journal of Fluids Engineering, 112 (3), 343–350, https://doi.org/10.1115/1.2909410.
  • Dargahi B. (2006) Experimental Study and 3D Numerical Simulations for a Free-Overflow Spillway, Journal of Hydraulic Engineering ASCE, 132 (9), 899–907, https://doi.org/10.1061/(ASCE)0733-9429(2006)132:9(899).
  • Falvey H. T. (1990) Cavitation in Chutes and Spillways, Engineering Monograph No. 42, Water Resources Technical Publication, USBR, Denver, Colorado.
  • Fluent 6.3 (2006) User’s Guide, Fluent Inc, Centerra Resource Park, 10 Cavendish Court, Lebanon, NH 03766.
  • Kobus H. (1984) Local air entrainment and detrainment, [in:] Symposium on Scale Effects in Modelling Hydraulic Structures, H. Kobus, ed., Akademie Technische, Esslingen, (4.10), 1–10.
  • Koschitzky H. P. (1987) Dimensionierungskonzept f¨ur Sohlbel¨ufter in Schussrinnen zur Vermeidung von Kavitationssch¨aden (Design concept for chute aerators to avoid cavitation damage), Mitteilung 65, Institut f¨ur Wasserbau, TU: Stuttgart [in German].
  • Marcano A., Castillejo N. (1984) Model-prototype comparison of aeration devices of Guri Spillway, [in:] Symp. on Scale Effects, H. Kobus, ed., IAHR, (4.6), 1–5.
  • Ozturk M., Aydin M. C. (2009) Verification of a 3-D Numerical Model for Spillway Aerator, Mathematical and Computational Applications, 14 (1), 21–30, https://doi.org/10.3390/mca14010021.
  • Pfister M., Chanson H. (2014) Two-Phase Air-Water Flows: Scale Effects in Physical Modeling, Journal of Hydrodynamics, 26 (2), 291–298, https://doi.org/10.1016/S1001-6058(14)60032-9.
  • Pfister M., Hager W. H. (2010) Chute Aerators: Air Transport Characteristics, Journal of Hydraulic Engineering ASCE, 136 (6), 352–359, https://doi.org/10.1061/(ASCE)HY.1943-7900.0000189.
  • Pinto N. L. S., Neidert S. H., Ota J. J. (1982) Aeration at High Velocity Flows, Water Power & Dam Construction, 34 (34–38), 42–44.
  • Rasmussen R. E. H. (1956) Some Experiments on Cavitation Erosion in Water Mixed with Air, [in:] Int. Symposium on Cavitation in Hydrodynamics, National Physical Laboratory, London, 1–25.
  • Roache P. J. (1994) Perspective a method for uniform reporting of grid refinement studies, Journal of Fluid Engineering, 116 (3), 405–413. https://doi.org/10.1115/1.2910291.
  • Rutschmann P. (1988) Calculation and optimum shape of spillway chute aerators, [in:] Int. Symp. On Model-Prototype Correlation of Hydr. Structures, P. H. Burgi, ed., ASCE Aug, 118–127.
  • Rutschmann P., Hager W. H. (1990) Air Entrainment by Spillway Aerators, Journal of Hydraulic Engineering, 116 (6), 765–782, https://doi.org/10.1061/(ASCE)0733-9429(1990)116:6(765).
  • Shayanseresht S., Manafpour M. (2022) Investigation of hydraulic characteristics and air concentration of a 3D simulated air-water flow on a spillway with an aerator device (a case study), ISH J Hydraul Eng, 28 (2), 219–231, https://doi.org/10.1080/09715010.2020.1856732.
  • Shayanseresht S., Manafpour M. (2021) A Comparative Assessment of Various Turbulence Models Applied for Simulation of Air-Water Flow over Chute Spillway, Period. Polytech. Civ. Eng., 65, 1200–1212, https://doi.org/10.3311/PPci.18036.
  • Teng P., Yang. J. (2016) CFD modeling of two-phase flow of a spillway chute aerator of large width, Journal of Applied Water Engineering and Research, 4 (5), 163–177, https://doi.org/10.1080/23249676.2015.1124030.
  • Volkart P., Rutschmann P. (1984) Air Entrainment Devices (Air Slots), Mitteilungen der Versuchsanstalt fur Wasserbau, Hydrologie und Glaziologie, ETH-Zurich, Switzerland, No. 72.
  • Water Research Institute (2003) The Final Report of Discharge System of Gavoshan Storage Dam’s Hydraulic Model, Ministry of Energy, Tehran, Iran.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bdddd14e-50b5-4cb4-b61b-28b62a619371
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.