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Abstract This paper involves the formulation of a non - linear optimal control model
framework depicting fascioliasis disease transmission in the population of domestic
ruminants only. The optimal control analysis is studied to investigate the effect of
time-dependent preventive controls of treatment of worms in infected animals c1(t),
hygiene compliance of separation/distancing of susceptible animals from infected
environment sources c2(t) and sanitation of the environment c3(t). The positivity
and boundedness of the model solutions are investigated, while the optimal control
model solutions are shown to exist. The optimal control model is characterized us-
ing the Pontryagins Maximum Principle (PMP), which leads to the derivation of the
optimality system. The optimal control model is solved using the forward - back-
ward Runge - Kutta fourth order (RK4) sweep scheme via computational software
MATLAB, where simulations reveal that each control is capable of reducing fascio-
liasis infection, but the combined implementation of the three control strategies are
more effective in stemming the high rate of prevalence of the disease in the domestic
animal population. Further simulations show that the preventive control profiles of
c1(t), c2(t) and c3(t) are sustained for few months before reducing gradually to zero
in the final time of 12 months.
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1. Introduction. Fascioliasis is a world global disease caused by F. hep-
atica and F. gigantica. It is an acute parasitic infectious disease in humans
and domestic ruminants, especially in nations with poor hygiene compliance,
treatment against worms in infected animals and the sanitation of environ-
ment.The prevalence of the disease is much higher in Africa and Asia where
several domestic ruminants are reared and are major host to the disease.
The World Health Organization (WHO) estimated that, at least, 24 to 30
million humans and animals are infected from more than 70 countries world-
wide [12]. Fascioliasis causes the dilation and thickening of bile duct and liver
damage in animals. The symptoms of this disease includes nausea, jaundice,
haemorrhage, anaemia and liver failure. Fascioliasis in animals can be treated
with drugs like albendazole, netobinim, closatel etc., while ruminants are to
be regularly vaccinated [9]. Several models have been formulated to describe
fascioliasis disease dynamics. Kostova and Chipev [16] studied the analytical
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oscillatory behavior of the model describing the intramolluscan trematode in-
fection, while Goodall et al., [11], formulated a model analysis of the database
of fascioliasis infection in animals in Northern Ireland. Smith [8] formulated a
model describing the age structure of F. hepatica population in sheep and the
efficacy of vaccine for controlling liver fluke infection, while Ogunmiloro [22],
constructed a mathematical model of fascioliasis epidemic interplay in human
and ruminant host population, under the Caputo fractional order sense, where
it was shown that the fractional order case of the model converges faster than
the integer order case. Some other related works can be seen in [25], [6], [26].
Moreover, optimal control theory is an important area of mathematics which
is an extension of calculus of variations and a mathematical optimization
method for deriving control policies, due to the work of Pontryagin et al.,
[24]. Numerical methods for solving optimal control problems can be grouped
as direct and indirect methods, where in direct method, optimality criteria are
formed through calculus of variation using PMP, which results to a Two Point
Boundary Value Problem (TPBVP). In direct methods, the control problem
is discretized and changed to a linear programming problem. The indirect
numerical method of interest in this work is the forward backward Runge -
Kutta fourth order method. This method is an iterative technique for solving
(TPBVP) that arises from indirect PMP approach to optimal control, where
its advantage includes, straightforward scalability to large systems and mod-
erate computational cost [18]. Several optimal control problems are nonlinear
in nature and do not have analytical solutions. Optimal control is an im-
portant application in biology and epidemiology. Literature supporting these
applications can be seen in [3, 1, 4, 5, 15] [10], [2, 13, 17, 7, 23, 14, 20, 21], ,
and [19], respectively.

Motivated by the works of the cited authors on modeling of fascioliasis
disease in ruminants and the application of optimal control analysis to sev-
eral models in biology and epidemiology, this work presents an extension of
earlier developed models by considering the epidemic interaction of classes
of sub-population of susceptible, vaccinated, infected domestic animals and
infested environmental sources with the effect of hygiene compliance of dis-
tancing, treatment and sanitation as time dependent controls. This has not
been considered to the best of the author’s understanding. This article is di-
vided into sections. Section 2 involves the optimal control model formulation
and basic analysis. Section 3 deals with the optimal assessment and existence
of the model solutions, while Section 4 examines the characterization of the
model and derivation of the optimality model system. Section 5 discusses the
numerical simulations of the optimal control model and Section 6 presents
the conclusion of the work.

2. Model Formulation and Basic Analysis Here, the animals in the
environment host population are considered. The animal population is parti-
tioned into sub-population of animals who are at risk of acquiring fascioliasis
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As, animals vaccinated against fascioliasis Av, animals infected with fasciolia-
sis Ai, and animals who recovered from fascioliasis Ar, so that at time t > 0,
the total animal host population

Na(t) = As(t) +Av(t) +Ai(t) +Ar(t),

while the presence of pathogens (worms) in the environment is denoted Pe(t).
The population of susceptible animals is increased by the quantity (1− ρ)θh,

Figure 1: Block diagram of fascioliasis epidemic interactions in animal host
population

where θh and ρ denotes the recruitment rates of susceptible animals and frac-
tion of susceptible animals with vaccination. The susceptible population is
further reduced by the quantities βaAs(t)Ai(t) and (1 − c2(t))βbAs(t)Pe(t),
where βa is the direct transmission rate of fascioliasis infection between sus-
ceptible and infected animals and βb denote the indirect transmission rate
of fascioliasis from environment to susceptible animals. Also, time dependent
controls are imposed on the system where, c1(t) denotes the control measure
of treatment with drugs administered to fascioliasis infected animals, c2(t) de-
notes the control measure of hygiene compliance of separation/distancing of
susceptible animals from infected environment sources and c3(t) denotes the
control measure of using disinfectant to sanitize and kill pathogens (worms)
present in environment sources. The natural death rate µa reduces the animal
host population, while the waning rate of vaccination in vaccinated animals
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and loss of immunity after recovery are denoted by ω1 and k respectively.
The progression rate of infected animals to recovery state is denoted σ, while
death due to fascioliasis infection is denoted by ψ. Finally, the rate of infec-
tious animal contribution to the environment is given by η, and the natural
death rate of pathogens (worms) in the environment is denoted by µe. The
assumptions guiding the model formulation were;

• Both the direct and indirect modes of transmission of fascioliasis disease
are considered.

• Proportion of susceptible animals are vaccinated, while vaccination wanes
overtime.

• Infectious contribution of infected animals to the environment leads to
emergence of pathogens(worms).

• There is natural death and death due to fascioliasis of animals.

These assumptions leads to the deterministic model with controls given by

Ȧs = (1− ρ)θh − βaAs(t)Ai(t)− (1− c2(t))βbAs(t)Pe(t)

− µaAs(t) + kAr(t) + ω1Av(t),

Ȧv = ρθh − ω1Av(t)− µaAv(t),

Ȧi = βaAs(t)Ai(t) + (1− c2(t))βbAs(t)Pe(t)

− (σ + ψ + µa + c1(t))Ai(t),

Ȧr = (σ + c1(t))Ai(t)− (µa + k)Ar(t),

Ṗe = ηAi − (µe + c3(t))Pe.


(1)

Subject to the initial conditions As ≥ 0, Av ≥ 0, Ai ≥ 0, Ar ≥ 0, Pe ≥ 0.

Table 1: Parameters Descriptions

Parameters Descriptions Values Sources
θh Birth rate of susceptible animals 0.0553 [11]
c1 Efficacy of treatment control on infected animals 0 - 1 Assumed
c2 Efficacy of hygiene/separation compliance control in the environment host 0 - 1 Assumed
c3 Efficacy of sanitation control in the environment host 0 - 1 Assumed
βa Rate of fascioliasis disease transmission among animals 0.118 [11]
βb Rate of fascioliasis disease transmission from environment to susceptible animals 0.318 [11]
k Rate of loss of immunity in animals 0.005 [15]
µa Natural mortality of animals 1

1×365 [8]
ρ Proportion of susceptible vaccinated animals 0.008 [6]
σ Natural recovery rate of animals 0.008 [6]
ω1 Waning rate of vaccination 0.001 [6]
ψ Death rate due to fascioliasis disease in animals 1

1×365 [8]
η Infectious animal contribution to the environment 0.213 [8]
µe Death rate of worms in the environment 0.134 [8]
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2.1. Positivity and Boundedness of the Model Solutions.

Theorem 2.1 Given that As(0) ≥ 0, Av(0) ≥ 0, Ai(0) ≥ 0, Ar(0) ≥ 0 and
Pe(0) ≥ 0, the solutions (As(t), Av(t), Ai(t), Ar(t), Pe(t)) of model (1) are
positive for t > 0.

Proof Let t1 = sup(t > 0|As > 0, Av > 0, Av > 0, Ai > 0, Pe > 0), from the
first equation in (1), that is,

Ȧs = (1− ρ)θh − βaAs(t)Ai(t)− (1− c2(t))βbAs(t)Pe(t) (2)
− µaAs(t) + kAr(t) + ω1Av(t).

The integrating factor of (2) is exp(µat+
∫ t1
0 βaAi(s)+(1−c2(t))βbPe(s))As(s)ds,

which can be re-written as

d

dt

{
As(t) exp

(
µat+

∫ t1

0

(
βaAi(s) + (1− c2(t))βbPe(s)

)
As(s)ds

)}
= ((1− ρ)θ + kAr(υ) + ω1Av(υ))

× exp
(
µat+

∫ t1

0

(
βaAi(s) + (1− c2(t))βbPe(s)

)
As(s)ds.

Hence,

As(t1) exp
(
µat1 +

∫ t1

0

(
βaAi(s) + (1− c2(t))βbPe(s)

)
As(s)ds

)
−As(0) =∫ t1

0
((1− ρ)θh + kAr(υ) + ω1Av(υ))

× exp
(
µaυ +

∫ υ

0
(βaAi(s) + (1− c2(t))βbPe(s))As(s)ds

)
dυ.

so that

As(t1) = exp
(
− µat1 +

∫ t1

0

(
βaAi(s) + (1− c2(t))βbPe(s)

)
As(s)ds

)
×
(
As(0) +

∫ t1

0
((1− ρ)θh + kAr(υ) + ω1Av(υ)) (3)

× exp
(
µaυ +

∫ υ

0
(βaAi(s) + (1− c2(t))βbPe(s))As(s)ds

)
dυ

)
> 0.

In a similar fashion from (2) to (3), the positivity of the remaining variables
Av > 0, Ai > 0, Ar > 0 and Pe > 0 in (1) can be proved.
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Theorem 2.2 The closed set Θ = Θa ∪Θb ⊂ ℜ4 · ℜ1, where

Θa =

{
(As, Av, Ai, Ar) ∈ ℜ4 : Na(t) ≤

θh
µa

}
and

Θb =

{
Pe ∈ ℜ1 : Pe(t) ≤

ηθh
µa(µe + c3(t))

}
is positively invariant and bounded for the model (1) with non-negative initial
conditions

Proof The model is divided into the animal and pathogen population, so
that the addition of the animal host population in the absence of death due
to fascioliasis infection yields

dNa

dt
= θh − µaNa(t)− ψAi(t) ≤ θh − µaNa(t). (4)

Since dNa
dt ≤ θh−µaNa(t), it follows that dNa

dt ≤ 0 if Na(t) ≥ θh
µa

. Thus, the so-
lution of (4) yieldsNa ≤ Na(0)e

−µat+ θh
µa
(1−e−µat), where limt→∞ supNa(t) ≤

θh
µa
. Thus Na(t) ≤ θh

µa
whenever Na(0) ≤ θh

µa
. Hence,

Θa =

{
(As, Av, Ai, Ar) ∈ ℜ4 : Na(t) ≤

θh
µa

}
.

Similarly, for the pathogen population, dPe
dt ≤ ηAi(t)−(µe+c3(t))Pe(t), where

it follows that dPe
dt ≤ 0 if Pe(t) ≥ ηθh

µa(µe+c3(t))
, so that Pe(t) ≤ Pe(0)e

−(µe+c3(t))t+
ηθh

µa(µe+c3(t))
(1 − e−(µe+c3(t))t), and limt→∞ supPe(t) ≤ ηθh

µa(µe+c3(t))
. Hence,

Θb =
{
Pe(t) ∈ ℜ1 : Pe(t) ≤ ηθh

µa(µe+c3(t))

}
. Therefore, the closed set Θ = Θa ×

Θb is positively invariant and bounded with respect to model (1). Hence the
model (1) is well - posed and realistic in the sense of fascioliasis disease trans-
mission.

3. Optimal Assessment and Existence of the Control Model Here,
the time dependent effective controls are achieved in finite time T consider-
ing the imposed controls in (1), using the Pontryagins Maximum Principle
(PMP). The control variables considered in (1) to assess the optimal control
problem in (1) are defined as follows.

• The total cost control c1(t) ∈ [0, 1] to implement the treatment of in-
fected animals is given by ∫ T

0

(
W1c

2
1(t)

)
dt, (5)
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where W1 is the weight parameter for the treatment control and T
denotes the final time of simulation. Also, the unit of W1 is 1

month2 .

• The total cost control c2(t) ∈ [0, 1] to implement the treatment of hy-
giene compliance of separation/distancing of animals from infected en-
vironment is given by ∫ T

0

(
W2c

2
2(t)

)
dt, (6)

where W2 is the weight parameter for the hygiene compliance of sepa-
ration/distancing control. The unit of W2 is 1

month2 .

• The total cost control c3(t) ∈ [0, 1] to implement the sanitation of
infected environment using chemical disinfectants to kill pathogens is
given by ∫ T

0

(
W3c

2
3(t)

)
dt, (7)

where W3 is the weight parameter for the sanitation control. The unit
of W3 is 1

month2 .

In (5) - (7), the control interventions are considered as nonlinear functions
since any public health control measures does not have a linear cost, hence
we assume a quadratic cost control as seen in other literature [5], [22], [8].
Considering the cost control assessment in (5) - (7), the objective functional
to be minimized is given by

min J(c1(t), c2(t), c3(t)) =

∫ T

0

(
A1Ai(t) +A2Pe(t) +

W1c
2
1(t)

2
(8)

+
W2c

2
2(t)

2
+
W3c

2
3(t)

2

)
dt.

In (8), A1 > 0, A2 > 0,W1 > 0,W2 > 0 and W3 > 0. The aim of the
control assessment is to minimize fascioliasis infected animals Ai(t) and worm
population in the environment Pe(t), while keeping the cost of treatment,
hygiene compliance of separation/distancing and environmental sanitation
low. The quantities A1 and A2 denotes the weight constant which balance each
terms in the integrand, where the goal is to obtain the optimal values c∗(t) =
(c∗1(t), c

∗
2(t), c

∗
3(t)) that minimizes the objective functional in (8) in the time

interval [0,T], so that J(c∗1(t), c∗2(t), c∗3(t)) = min {J(c1(t), c2(t), c3(t)) ∈ C} ,
subject to (1). It is assumed that the control set C is Lebesgue measurable,
defined as

C =
{
c(t) = (c1(t), c2(t), c3(t)), (9)
0 ≤ c1(t) ≤ 1, 0 ≤ c2(t) ≤ 1, 0 ≤ c3(t) ≤ 1, t ∈ [0, T ]

}
.



274 Optimal Control Analysis of Fascioliasis Disease Transmission Dynamics

In order to show that the control problem exist, we re-write (1) in a vector
form as

X
′
= BX + F (X), (10)

where

X =


As(t)
Av(t)
Ai(t)
Ar(t)
Pe(t)

 , (11)

B =


−µa ω1 0 k 0
0 −(ω1 + µa) 0 0 0
0 0 −(σ + ψ + µa + c1(t)) 0
0 0 (σ + c1(t)) −(µa + k) 0
0 0 η 0 −(µa + c3(t))


and

F (X) =


(1− ρ)θh − βaAs(t)Ai(t)− (1− c2(t))βbAs(t)Pe(t)

0
βaAs(t)Ai(t) + (1− c2(t))βbAs(t)Pe(t)

0
0

 .

In (10), X ′ denotes the derivative with respect to time t. The system (10) is
a nonlinear system with bounded coefficients, such that

Ξ(X) = BX + F (X)

where the term F (X) on the right hand side of (10) satisfies

|F (X1)− F (X)| ≤ Q1(|As1(t)−As2(t)|+Q2|Av1(t)−Av2(t)|+Q3|Ai1(t)−Ai2(t)|
+Q4|Ar1(t)−Ar2(t)|+Q5|Pe1(t)− Pe2(t)|)
≤ Q(|As1(t)−As2(t)|+ |Av1(t)−Av2(t)|+ |Ai1(t)−Ai2(t)|
+ |Ar1(t)−Ar2(t)|+ |Pe1(t)− Pe2(t)|),

where Q is a positive constant such that, Q = max(Q1, Q2, Q3, Q4, Q5) is
independent of the state variables. Also

|Ξ(X1)− Ξ(X2)| ≤ Q|X1 −X2|,

where Q = Q1+Q2+Q3+Q4+Q5+ ||K|| <∞. This shows that the function
Ξ(X) is uniformly Lipschitz continuous, therefore the solution of (10) exists.

4. Characterization of the Optimal Control Problem The neces-
sary conditions that an optimal control problem must meet are formulated
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from the PMP [25]. This technique changes (1) and (8) into a problem of point
wise minimization of Hamiltonian Ht with respect to controls c1(t), c2(t) and
c3(t). In order to obtain the solution to the optimal control problem, a La-
gragian Lg is defined together with (10), so that

Lg(As(t), Av(t), Ai(t), Ar(t), Pe(t), c1(t), c2(t), c3(t)) =
(
A1Ai(t) +A2Pe(t)

+
W1c

2
1(t)

2
+
W2c

2
2(t)

2
+
W3c

2
3(t)

2

)
Also, the Ht is defined for the control model to derive the minimum value of
Lg by denoting A = (As(t), Av(t), Ai(t), Ar(t), Pe(t)), C = (c1(t), c2(t), c3(t))
and ∆ = (δ1, δ2, δ3, δ4, δ5). Hence, Ht is defined as

Ht(A,C,∆) = A1Ai(t) +A2Pe(t) +
W1c

2
1(t)

2
+
W2c

2
2(t)

2
+
W3c

2
3(t)

2
+ δ1((1− ρ)θh − βaAs(t)Ai(t)− (1− c2(t))βbAs(t)Pe(t)

− µaAs(t) + kAr(t) + ω1Av(t)) + δ2(ρθh − ω1Av(t)− µaAv(t))

+ δ3(βaAs(t)Ai(t) + (1− c2(t))βbAs(t)Pe(t)

− (σ + ψ + µa + c1(t))Ai(t)) + δ4((σ + c1(t))Ai(t)− (µa + k)Ar(t))

+ δ5(ηAi(t)− (µe + c3(t)))Pe(t).


where δi(i = 1, .., 5) denotes the adjoint or co-state variables for the state
equations As(t), Av(t), Ai(t), Ar(t), Pe(t).

Theorem 4.1 For the optimal control variables c∗1(t), c
∗
2(t), and c∗3(t) and

the solutions A∗
s(t), A

∗
v(t), A

∗
i (t), A

∗
r(t), and P ∗

e (t) of the corresponding state
system in (1), there exists adjoint variables δi(i = 1, .., 5) satisfying

dδi
dt

=
−∂Ht

∂A
(12)

with transversality conditions δ1(T ) = δ2(T ) = δ3(T ) = δ4(T ) = δ5(T ) = 0
where A∗ = (A∗

s(t), A
∗
v(t), A

∗
i (t), A

∗
r(t), P

∗
e (t))

Further, the optimality conditions

c∗1(t) = min

{
1,max

{
0,

(δ4 − δ3)A
∗
i (t)

W1

}}
,

c∗2(t) = min

{
1,max

{
0,

(δ1 − δ3)βbA
∗
s(t)P

∗
e (t)

W2

}}
,

c∗3(t) = min

{
1,max

{
0,

−δ5P ∗
e (t)

W3

}}
.
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Proof The adjoint or costate variables are derived by differentiating Ht in
(12) and evaluating the optimal control variables, which yields

dδ1
dt

=
−∂Ht

∂A∗
s(t)

= −δ1(−βaA∗
i (t)− (1− c2(t))P

∗
e (t)− µa)

+ δ3(βaA
∗
i (t) + (1− c2(t))βbP

∗
e (t))

dδ2
dt

=
−∂Ht

∂A∗
v(t)

= −δ1ω1 − δ2(ω1 + µa)

dδ3
dt

=
−∂Ht

∂A∗
i (t)

= A1 + δ1(−βaA∗
s(t)) + δ3(βaA

∗
s(t)

− (σ + ψ + µa + c1(t))) + δ4(σ + c1(t)) + δ5η

dδ4
dt

=
−∂Ht

∂A∗
r(t)

= δ1k + δ4(−(µa + k))

dδ5
dt

=
−∂Ht

∂P ∗
e (t)

= A2 + δ1(−(1− c2(t)))βbA
∗
s(t)

+ δ3((1− c2(t))βbA
∗
s(t)) + δ5(−(µe + c3(t)))


with transversality δ1(T ) = δ2(T ) = δ3(T ) = δ4(T ) = δ5(T ) = 0. Further-
more, differentiating the Hamiltonian function Ht in (10) with respect to the
control variables. Then solving for controls c∗1(t), c∗2(t) and c∗3(t) results in the
optimality conditions given as

dH∗
t

dc1(t)
=W1c

∗
1(t) + (δ4 − δ3)A

∗
i (t) = 0, (13)

dH∗
t

dc2(t)
=W2c

∗
2(t) + (δ1 − δ3)βbA

∗
s(t)P

∗
e (t) = 0, (14)

and
dH∗

t

dc3(t)
=W3c

∗
3(t)− δ5P

∗
e (t) = 0. (15)

Solving for c1(t) = c∗1(t), c2(t) = c∗2(t), and c3(t) = c∗3(t) one obtains

c∗1(t) =
(δ4 − δ3)A

∗
i (t)

W1
,

c∗2(t) =
(δ1 − δ3)βbA

∗
s(t)P

∗
e (t)

W2
,

c∗3(t) =
−δ5P ∗

e (t)

W3
,


(16)
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In compact form

c∗1(t) = min

{
1,max

{
0,

(δ4 − δ3)A
∗
i (t)

W1

}}
,

c∗2(t) = min

{
1,max

{
0,

(δ1 − δ3)βbA
∗
s(t)P

∗
e (t)

W2

}}
,

c∗3(t) = min

{
1,max

{
0,

−δ5P ∗
e (t)

W3

}}
.


(17)

Therefore, the optimality system given by

dAs

dt
= (1− ρ)θh − βaAs(t)Ai(t)− (1− c2(t))βbAs(t)Pe(t)

− µaAs(t) + kAr(t) + ω1Av(t),

dAv

dt
= ρθh − ω1Av(t)− µaAv(t),

dAi

dt
= βaAs(t)Ai(t) + (1− c2(t))βbAs(t)Pe(t)

− (σ + ψ + µa + c1(t))Ai(t),

dAr

dt
= (σ + c1(t))Ai(t)− (µa + k)Ar(t),

dPe

dt
= ηAi − (µe + c3(t))Pe(t),

dδ1
dt

= −δ1(−βaA∗
i (t)− (1− c2(t))P

∗
e (t)− µa) + δ3(βaA

∗
i (t)

+ (1− c2(t))βbP
∗
e (t)),

dδ2
dt

= −δ1ω1 − δ2(ω1 + µa),

dδ3
dt

= A1 + δ1(−βaA∗
s(t)) + δ3(βaA

∗
s(t)− (σ + ψ + µa + c1(t)))

+ δ4(σ + c1(t)) + δ5η,

dδ4
dt

= δ1k + δ4(−(µa + k)),

dδ5
dt

= A2 + δ1(−(1− c2(t)))βbA
∗
s(t) + δ3((1− c2(t))βbA

∗
s(t))

+ δ5(−(µe + c3(t))).



(18)

subject to the initial and transversality conditions

As(0) ≥ 0, Av(0) ≥ 0, Ai(0) ≥ 0, Ar(0) ≥ 0

and

Pe(0) ≥ 0
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and

δ1(T ) = δ2(T ) = δ3(T ) = δ4(T ) = δ5(T ) = 0.
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Figure 2: Simulations of the model state variables with and without controls

5. Numerical Simulations and Discussion of Results The model
describing the fascioliasis epidemic interplay in the animal host population
according to their disease status is constructed in (1) and described by Figure
1. The positivity and boundedness of (1) are established in Theorems 1 and
2 and objective of the optimal control model to be minimized is given by (8).
The existence of the optimal control model is established and with the aid
of PMP, the Hamiltonian is formed in (12) and the optimal control variables
are characterized and the adjoint equations are derived in (13)-(18).
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Figure 3: Simulations of the model state variables with and without controls
and the effect of control profile c1(t) in infected animals

In order to solve the optimal control model, the forward - backward Runge
- Kutta fourth order numerical approximation technique is employed via
MATLAB program [18]. Firstly, the state equation in (18) with an initial
guess for the controls is solved forward in time and the adjoint system in (18)
is solved backward in time subject to initial and transversality conditions.
The controls are then updated by employing the convex combination of the
former controls and the values from (18). This process continues until the
state equations solutions are very near the former iteration values [20], [18],
and [19].

The values of parameters in Table 1 and the state variables which are
assumed to be As = 0.85, Av = 0.40, Ai = 0.70, Ar = 0.63 and Pe = 0.18
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are used for the simulations. Also, the weight factors are as A1 = 700, A2 =
400,W1 = 90,W2 = 75 and W3 = 77. These weight factors were adopted
on the efforts required to provide the control measures under consideration.
The weight factors Ai(i = 1, 2) are much higher that Wi(i = 1, 2, 3) because
minimization of fascioliasis is of utmost importance, while the final time T for
the control implementation is taken to be 12 months. Figures 2a-2c and 3a-3b
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Figure 4: Simulations of the model state variables with and without controls

shows the combined effect of the three controls on the susceptible, infected and
vaccinated groups of animals. In the absence of the three combined controls
c1(t), c2(t) and c3(t), there is an increase in the number of infected animals
but in the presence of controls, a sharp decline which flattens out within 5-12
months is observed to reduce infection in the animals. Also in Figure 3c, the
control profile of treatment c1(t) effective in treating the animal is sustained
at maximum in 2.3 months before declining to zero in 12 months. The control
of hygiene compliance of separation/distancing c2(t) of susceptible animals
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from the environment infected with pathogens is observed to reduce infection
slightly, while the absence of control leads to steady increase of the animals
with infection in Figure 4a, but the control treatment proves more effective in
Figure 4b. The control profiles of hygiene compliance of distancing of animals
and sanitation in 4c and 4d increases and sustains within 2-3 months, but
becomes effective after the decline to zero in 12 months.

6. Conclusion A model system based on ordinary differential equations
with time - dependent controls describing the dynamics of the spread of fas-
cioliasis disease in domestic animals and the environment is formulated. The
hygiene compliance of distancing/separation, treatment and sanitation con-
trols are incorporated into the model to minimize the numbers of infected
animals and environment sources. The cost of quadratic objective functional
is chosen, since the cost of intervention is nonlinear. Also the existence anal-
ysis of the optimal control model and the optimality system are established,
while the derived optimality system is solved using the Runge - Kutta fourth
order algorithm via MATLAB. It is observed from the numerical simulations
that, each of the controls posses its own importance in reducing the disease
but the combined effort of the controls proved to be more potent in mini-
mizing fascioliasis disease in animal and environment host population. The
simulations of the control profiles show that consistent and timely applica-
tion of the controls in the first two months leads to the gradual reduction of
fascioliasis disease to zero in final time of 12 months. In view of these results,
it is suggested to veterinary health policy makers that intense application of
hygiene compliance, treatment and sanitation are capable of eliminating fas-
cioliasis in domestic ruminants annually. This work is open to further research
by considering the cost effective analysis of the controls.
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Optymalne sterowanie dynamiki przenoszenia fascjolozy.
Oluwatayo Michael Ogunmiloro

Streszczenie Fascjoloza jest ostrą pasożytniczą chorobą zakaźną u ludzi i domowych
przeżuwaczy, zwłaszcza w krajach o słabym przestrzeganiu higieny, braku leczenia
z robaczycy u zakażonych zwierząt i utrzymywaniu warunków sanitarnych środowi-
ska. Niniejsza praca dotyczy sformułowania nieliniowego modelu optymalnego stero-
wania, ilustrująca przenoszenie fascjolozy przy założeniu ograniczenia do populacji
domowych przeżuwaczy. Optymalne sterowanie jest badane w celu ustalenia wpływu
zależnych od czasu prewencyjnych kontroli leczenia robaków u zakażonych zwierząt
c1(t), przestrzegania higieny oddzielania/oddalania podatnych na zakażenie zwierząt
od istniejących źródeł środowiskowych c2(t) i sanitacja środowiska c3(t). Zbadano
dodatniość i ograniczoność rozwiązań modelowych oraz wykazano istnienie optymal-
nych sterowań w modelu kontrolnym. Optymalne sterowanie scharakteryzowano za
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pomocą zasady maksimum Pontryagina, która prowadzi do wyprowadzenia systemu
warunków optymalności. Sterowania optymalne są uzyskane przy użyciu schematu
czwartego rzędu Runge - Kutta. Obliczenia wykonano za pomocą oprogramowania
MATLAB. Symulacje pokazują, że każde sterowanie jest w stanie zmniejszyć infek-
cję fascjolozą, ale połączone użycie trzech strategii sterowania jest bardziej skuteczne
gdy mamy do czynienia z wysokim wskaźnikiem występowania choroby w popula-
cji zwierząt domowych. Dalsze symulacje pokazują, że profile sterowań prewencyjnej
c1(t), c2(t) i c3(t) utrzymują się przez kilka miesięcy, po czym stopniowo zmniejszają
się do zera w końcowym okresie 12 miesięcy.

Klasyfikacja tematyczna AMS (2010): 62J05; 92D20.

Słowa kluczowe: Fascjoloza, system optymalny, zasad maksimum Pontryagina (ZMP),
metoda Runge’go-Kutta czwartego rzędu.
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