PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Demonstration of a high extinction ratio TiN-based TM-pass waveguide polarizer

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A high extinction ratio transverse magnetic (TM)-pass plasmonic waveguide polarizer has been designed and optimized. This device exploits two parallel TiN strips embedded in a silicon dioxide cladding to cut off the transverse electric (TE) polarization state, which is either reflected or absorbed, while the TM mode can pass through the main silicon waveguide with significant low losses. Given a device of 5 μm length, an extinction ratio as high as 60.7 dB and an insertion loss of 2.23 dB were achieved at the target wavelength of 1.55 μm. To our knowledge, this extinction ratio is one of the highest values ever reported. In the wavelength of 1.45–1.59 μm, the proposed device provides an optical bandwidth of 140 nm for an extinction ratio more than 30 dB and an insertion loss less than 3 dB. This device is relatively simple and is easier to be fabricated than other architectures that are found in the literature.
Czasopismo
Rocznik
Strony
585--598
Opis fizyczny
Bibliogr. 60 poz., rys., tab.
Twórcy
autor
  • Department of Information Engineering, University of Padova, Via Gradenigo 6/B, 35131, Padova, Italy
  • School of Physics and Materials Science, Guangzhou University, Guangzhou 510006, China
  • Centro di Ateneo di Studi e Attività Spaziali (CISAS), Università di Padova, via Venezia, 15, 35131, Padova, Italy
  • Istituto di Fotonica e Nanotecnologie (CNR-IFN), Consiglio Nazionale delle Ricerche, via Trasea, 7, 35131 Padova, Italy
  • Department of Information Engineering, University of Padova, Via Gradenigo 6/B, 35131, Padova, Italy
Bibliografia
  • [1] BARWICZ T., WATTS M.R., POPOVIĆ M.A., RAKICH P.T., SOCCI L., KÄRTNER F.X., IPPEN E.P., SMITH H.I., Polarization-transparent microphotonic devices in the strong confinement limit, Nature Photonics 1, 2007, pp. 57–60, DOI: 10.1038/nphoton.2006.41.
  • [2] WU L., GUO J., XU H., DAI X., XIANG Y., Ultrasensitive biosensors based on long-range surface plasmon polariton and dielectric waveguide modes, Photonics Research 4(6), 2016, pp. 262–266, DOI: 10.1364/PRJ.4.000262.
  • [3] SILVERSTONE J.W., BONNEAU D., OHIRA K., SUZUKI N., YOSHIDA H., IIZUKA N., EZAKI M., NATARAJAN C.M., TANNER M.G., HADFIELD R.H., ZWILLER V., MARSHALL G.D., RARITY J.G., O’BRIEN J.L., THOMPSON M.G., On-chip quantum interference between silicon photon-pair sources, Nature Photonics 8, 2014, pp. 104–108, DOI: 10.1038/nphoton.2013.339.
  • [4] LIU X., OSGOOD R.M., VLASOV Y.A., GREEN W.M.J., Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides, Nature Photonics 4, 2010, pp. 557–560, DOI: 10.1038/nphoton.2010.119.
  • [5] DAI D., LIU L., GAO S., XU D.X., HE S., Polarization management for silicon photonic integrated circuits, Laser & Photonics Reviews 7(3), 2013, pp. 303–328, DOI: 10.1002/lpor.201200023.
  • [6] DAI D., LIU L., WOSINSKI L., HE S., Design and fabrication of ultra-small overlapped AWG demultiplexer based on α-Si nanowire waveguides, Electronics Letters 42(7), 2006, pp. 400–402, DOI: 10.1049/el:20060157.
  • [7] HUANG Y., ZHU S., ZHANG H., LIOW T.-Y., LO G.-Q., CMOS compatible horizontal nanoplasmonic slot waveguides TE-pass polarizer on silicon-on-insulator platform, Optics Express 21(10), 2013, pp. 12790–12796, DOI: 10.1364/OE.21.012790.
  • [8] ZAFAR H., ODEH M., KHILO A., DAHLEM M.S., Low-loss broadband silicon TM-pass polarizer based on periodically structured waveguides, IEEE Photonics Technology Letters 32(17), 2020, pp. 1029–1032, DOI: 10.1109/LPT.2020.3011056.
  • [9] CHEN C.-H., PANG L., TSAI C.-H., LEVY U., FAINMAN Y., Compact and integrated TM-pass waveguide polarizer, Optics Express 13(14), 2005, pp. 5347–5352, DOI: 10.1364/OPEX.13.005347.
  • [10] DAI D., WANG Z., JULIAN N., BOWERS J.E., Compact broadband polarizer based on shallowly-etched silicon-on-insulator ridge optical waveguides, Optics Express 18(26), 2010, pp. 27404–27415, DOI: 10.1364/OE.18.027404.
  • [11] GUAN X., CHEN P., CHEN S., XU P., SHI Y., DAI D., Low-loss ultracompact transverse-magnetic-pass polarizer with a silicon subwavelength grating waveguide, Optics Letters 39(15), 2014, pp. 4514–4517, DOI: 10.1364/OL.39.004514.
  • [12] XIONG Y., XU D.-X., SCHMID J.H., CHEBEN P., YE W.N., High extinction ratio and broadband silicon TE-pass polarizer using subwavelength grating index engineering, IEEE Photonics Journal 7(5), 2015, article no. 7802107, DOI: 10.1109/JPHOT.2015.2483204.
  • [13] YING Z., WANG G., ZHANG X., HUANG Y., HO H.-P., ZHANG Y., Ultracompact TE-pass polarizer based on a hybrid plasmonic waveguide, IEEE Photonics Technology Letters 27(2), 2015, pp. 201–204, DOI: 10.1109/LPT.2014.2365029.
  • [14] NG T.K., KHAN M.Z.M., AL-JABR A., OOI B.S., Analysis of CMOS compatible Cu-based TM-pass optical polarizer, IEEE Photonics Technology Letters 24(9), 2012, pp. 724–726, DOI: 10.1109/LPT.2012.2187329.
  • [15] WANG J., QI M., XUAN Y., HUANG H., LI Y., LI M., CHEN X., JIA Q., SHENG Z., WU A., LI W., WANG X., ZOU S., GAN F., Proposal for fabrication-tolerant SOI polarization splitter-rotator based on cascaded MMI couplers and an assisted bi-level taper, Optics Express 22(23), 2014, pp. 27869–27879, DOI: 10.1364/OE.22.027869.
  • [16] NI B., XIAO J., Plasmonic-assisted TE-pass polarizer for silicon-based slot waveguides, IEEE Photonics Technology Letters 30(5), 2018, pp. 463–466, DOI: 10.1109/LPT.2018.2798709.
  • [17] NI B., XIAO J., A compact silicon-based TE-pass polarizer using three-guide directional couplers, IEEE Photonics Technology Letters 29(19), 2017, pp. 1631–1634, DOI: 10.1109/LPT.2017.2739242.
  • [18] GUAN H., NOVACK A., STRESHINSKY M., SHI R., FANG Q., LIM A.E.-J., LO G.-Q., BAEHR-JONES T., HOCHBERG M., CMOS-compatible highly efficient polarization splitter and rotator based on a double-etched directional coupler, Optics Express 22(3), 2014, pp. 2489–2496, DOI: 10.1364/OE.22.002489.
  • [19] ALAM M.Z., AITCHISON J.S., MOJAHEDI M., Compact and silicon-on-insulator-compatible hybrid plasmonic TE-pass polarizer, Optics Letters 37(1), 2012, pp. 55–57, DOI: 10.1364/OL.37.000055.
  • [20] KIM J.T., CHOI C.-G., Graphene-based polymer waveguide polarizer, Optics Express 20(4), 2012, pp. 3556–3562, DOI: 10.1364/OE.20.003556.
  • [21] GUAN C., LI S., SHEN Y., YUAN T., YANG J., YUAN L., Graphene-coated surface core fiber polarizer, Journal of Lightwave Technology 33(2), 2015, pp. 349–353, DOI: 10.1109/JLT.2014.2386893.
  • [22] YIN X., KE X., CHEN L., ZHANG T., LI J., ZHU Z., LI X., Ultra-broadband TE-pass polarizer using a cascade of multiple few-layer graphene embedded silicon waveguides, Journal of Lightwave Technology 34(13), 2016, pp. 3181–3187, DOI: 10.1109/JLT.2016.2547896.
  • [23] BAO Q., ZHANG H., WANG B., NI Z., LIM C.H.Y.X., WANG Y., TANG D.Y., LOH K.P., Broadband graphene polarizer, Nature Photonics 5, 2011, pp. 411–415, DOI: 10.1038/nphoton.2011.102.
  • [24] SÁNCHEZ L., LECHAGO S., SANCHIS P., Ultra-compact TE and TM pass polarizers based on vanadium dioxide on silicon, Optics Letters 40(7), 2015, pp. 1452–1455, DOI: 10.1364/OL.40.001452.
  • [25] ZHANG S., LI Z., XING F., Review of polarization optical devices based on graphene materials, International Journal of Molecular Sciences 21(5), 2020, article no. 1608, DOI: 10.3390/ijms21051608.
  • [26] CARRILLO S.G.-C., NASH G.R., HAYAT H., CRYAN M.J., KLEMM M., BHASKARAN H., WRIGHT C.D., Design of practicable phase-change metadevices for near-infrared absorber and modulator applications, Optics Express 24(12), 2016, pp. 13563–13573, DOI: 10.1364/OE.24.013563.
  • [27] KINSEY N., FERRERA M., NAIK G.V., BABICHEVA V.E., SHALAEV V.M., BOLTASSEVA A., Experimental demonstration of titanium nitride plasmonic interconnects, Optics Express 22(10), 2014, pp. 12238–12247, DOI: 10.1364/OE.22.012238.
  • [28] AZZAM S.I., OBAYYA S.S.A., Titanium nitride-based CMOS-compatible TE-pass and TM-pass plasmonic polarizers, IEEE Photonics Technology Letters 28(3), 2016, pp. 367–370, DOI: 10.1109/LPT.2015.2496380.
  • [29] HASENICK B., The increasing importance of extinction ratio in telecommunications, <https://www.lightwaveonline.com> (October 2005).
  • [30] KISH P., The Effect of Network Cabling on Bit Error Rate Performance, Nordx/CDT White Paper, 2000.
  • [31] COMSOL Multiphysics, 5.3 a, 2014.
  • [32] SALZBERG C.D., VILLA J.J., Infrared refractive indexes of silicon germanium and modified selenium glass, Journal of the Optical Society of America 47(3), 1957, pp. 244–246, DOI: 10.1364/JOSA.47.000244.
  • [33] TAN C.Z., Determination of refractive index of silica glass for infrared wavelengths by IR spectroscopy, Journal of Non-Crystalline Solids 223(1–2), 1998, pp. 158–163, DOI: 10.1016/S0022-3093(97)00438-9.
  • [34] NAIK G.V., SHALAEV V.M., BOLTASSEVA A., Alternative plasmonic materials: beyond gold and silver, Advanced Materials 25(24), 2013, pp. 3264–3294, DOI: 10.1002/adma.201205076.
  • [35] CHROSTOWSKI L., HOCHBERG M., Silicon Photonics Design: From Devices to Systems, Cambridge University Press, 2015.
  • [36] LI C., DAI D., Compact polarization beam splitter for silicon photonic integrated circuits with a 340-nm-thick silicon core layer, Optics Letters 42(21), 2017, pp. 4243–4246, DOI: 10.1364/OL.42.004243.
  • [37] HUANG Y., TU Z., YI X., LI Y., WANG X., Polarization beam splitter based on cascaded step-size multimode interference coupler, Optical Engineering 52(7), 2013, article no. 077103, DOI: 10.1117/1.OE.52.7.077103.
  • [38] LIU L., DENG Q., ZHOU Z., Manipulation of beat length and wavelength dependence of a polarization beam splitter using a subwavelength grating, Optics Letters 41(21), 2016, pp. 5126–5129, DOI: 10.1364/OL.41.005126.
  • [39] BAI B., LIU L., CHEN R., ZHOU Z., Low loss, compact TM-pass polarizer based on hybrid plasmonic grating, IEEE Photonics Technology Letters 29(7), 2017, pp. 607–610, DOI: 10.1109/LPT.2017.2663439.
  • [40] WU S., HAO J., ZHAO Z., YAO X.S., Low loss and high extinction ratio all-silicon TM-pass polarizer with reflection removal enabled by contra-mode conversion Bragg-gratings, Optics Express 29(17), 2021, pp. 27640–27652, DOI: 10.1364/OE.432807.
  • [41] SABER M.G., PLANT D.V., ABADÍA N., Broadband all-silicon hybrid plasmonic TM-pass polarizer using bend waveguides, AIP Advances 11(4), 2021, article no. 045219, DOI: 10.1063/5.0044490.
  • [42] PRAKASH C., SEN M., Optimization of silicon-photonic crystal (PhC) waveguide for a compact and high extinction ratio TM-pass polarization filter, Journal of Applied Physics 127(2), 2020, article no. 023101, DOI: 10.1063/1.5130160.
  • [43] HU X., WANG J., Ultrabroadband compact graphene–silicon TM-pass polarizer, IEEE Photonics Journal 9(2), 2017, article no. 7101310, DOI: 10.1109/JPHOT.2017.2672901.
  • [44] YUAN S., WANG Y., HUANG Q., XIA J., YU J., Ultracompact TM-pass/TE-reflected integrated polarizer based on a hybrid plasmonic waveguide for silicon photonics, [In] 11th International Conference on Group IV Photonics (GFP), IEEE, 2014, pp. 183–184, DOI: 10.1109/Group4.2014.6961981.
  • [45] ZHOU W., TONG Y., SUN X., TSANG H.K., Ultra-broadband hyperuniform disordered silicon photonic polarizers, IEEE Journal of Selected Topics in Quantum Electronics 26(2), 2020, article no. 8201109, DOI: 10.1109/JSTQE.2019.2938069.
  • [46] XU Z., LYU T., SUN X., Interleaved subwavelength gratings strip waveguide based TM pass polarizer on SOI platform, IEEE Photonics Journal 12(2), 2020, article no. 4900110, DOI: 10.1109/JPHOT.2020.2968570.
  • [47] CHEN R., BAI B., ZHOU Z., Low-loss hybrid plasmonic TM-pass polarizer using polarization-dependent mode conversion, Photonics Research 8(7), 2020, pp. 1197–1202, DOI: 10.1364/PRJ.392654.
  • [48] SABER M.G., ABADÍA N., PLANT D.V., CMOS compatible all-silicon TM pass polarizer based on highly doped silicon waveguide, Optics Express 26(16), 2018, pp. 20878–20887, DOI: 10.1364/OE.26.020878.
  • [49] KIM D.W., LEE M.H., KIM Y., KIM K.H., Ultracompact transverse magnetic mode-pass filter based on one-dimensional photonic crystals with subwavelength structures, Optics Express 24(19), 2016, pp. 21560–21565, DOI: 10.1364/OE.24.021560.
  • [50] ZHANG J., YANG J., LIANG L., WU W., Broadband TM-mode-pass polarizer and polarization beam splitter using asymmetrical directional couplers based on silicon subwavelength grating, Optics Communications 407, 2018, pp. 46–50, DOI: 10.1016/j.optcom.2017.08.044.
  • [51] ABD-ELKADER A.E.-S., HAMEED M.F.O., AREED N.F.F., MOSTAFA H.E.-D., OBAYYA S.S.A., Ultracompact AZO-based TE-pass and TM-pass hybrid plasmonic polarizers, Journal of the Optical Society of America B 36(3), 2019, pp. 652–661, DOI: 10.1364/JOSAB.36.000652.
  • [52] DHINGRA N., DELL’OLIO F., Ultralow loss and high extinction ratio TM-pass polarizer in silicon photonics, IEEE Photonics Journal 12(6), 2020, article 6602311, DOI: 10.1109/JPHOT.2020.3032847.
  • [53] GUAN X., XU P., SHI Y., DAI D., Ultra-compact broadband TM-pass polarizer using a silicon hybrid plasmonic waveguide grating, [In] Asia Communications and Photonics Conference 2013, OSA Technical Digest (online), Optica Publishing Group, 2013, paper ATh4A.2, DOI: 10.1364/ACPC.2013.ATh4A.2.
  • [54] BAI B., YANG F., ZHOU Z., Demonstration of an on-chip TE-pass polarizer using a silicon hybrid plasmonic grating, Photonics Research 7(3), 2019, pp. 289–293, DOI: 10.1364/PRJ.7.000289.
  • [55] SELVARAJA S.K., JAENEN P., BOGAERTS W., VAN THOURHOUT D., DUMON P., BAETS R., Fabrication of photonic wire and crystal circuits in silicon-on-insulator using 193-nm optical lithography, Journal of Lightwave Technology 27(18), 2009, pp. 4076–4083, DOI: 10.1109/JLT.2009.2022282.
  • [56] HEIL S.B.S., LANGEREIS E., ROOZEBOOM F., VAN DE SANDEN M.C.M., KESSELS W.M.M., Low-temperature deposition of TiN by plasma-assisted atomic layer deposition, Journal of the Electrochemical Society 153(11), 2006, G956, DOI: 10.1149/1.2344843.
  • [57] RITALA M., LESKELÄ M., DEKKER J.P., MUTSAERS C., SOININEN P.J., SKARP J., Perfectly conformal TiN and Al2O3 films deposited by atomic layer deposition, Chemical Vapor Deposition 5(1), 1999, pp. 7–9, DOI: 10.1002/(SICI)1521-3862(199901)5:1%3C7::AID-CVDE7%3E3.0.CO;2-J.
  • [58] SELVARAJA S.K., Wafer-Scale Fabrication Technology for Silicon Photonic Integrated Circuits, PhD Thesis, Ghent University, Belgium, 2011.
  • [59] TANUSHI Y., KITA T., TOYAMA M., SEKI M., KOSHINO K., YOKOYAMA N., OHTSUKA M., SUGIYAMA A., ISHITSUKA E., SANO T., HORIKAWA T., YAMADA H., Uniform characteristics of Si-wire waveguide devices fabricated on 300 mm SOI wafers by using ArF immersion lithography, [In] 10th International Conference on Group IV Photonics, IEEE, 2013, pp. 105–106, DOI: 10.1109/Group4.2013.6644448.
  • [60] SELVARAJA S.K., BOGAERTS W., DUMON P., VAN THOURHOUT D., BAETS R., Subnanometer linewidth uniformity in silicon nanophotonic waveguide devices using CMOS fabrication technology, IEEE Journal of Selected Topics in Quantum Electronics 16(1), 2010, pp. 316–324, DOI: 10.1109/JSTQE.2009.2026550.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bdd7c28d-ecc1-4ad1-af3f-bc648bd3cf16
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.