PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparison of conventional and differential evolution based parameter estimation methods on the food frequency analysis

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Accurate estimation of food frequency is an important task for water resources management. This starts with appropriate selection of probability distribution to food samples (annual maximum flows) that is of great importance for food frequency analysis (FFA). In order to reach the most precise estimation, the probability distribution of the considered time series should be well defined and its parameters should be more accurately estimated. First time in the FFA literature, a differential evolution-based parameter estimation method is applied to obtain the parameters of probability distribution functions and is compared with the traditional maximum likelihood method (MLM) in the present study. For this purpose, eleven distributions have been used to describe the annual maximum food series of nine gauging sites, with the performance of each distribution being investigated based on six criteria. The results revealed that a single distribution cannot be specified as the best-ft distribution for the study area. Moreover, it has been found that the applied approach improves the probability prediction of foods better than MLM method for efficient design of hydraulic structures, risk analysis and floodplain management.
Czasopismo
Rocznik
Strony
1887--1900
Opis fizyczny
Bibliogr. 45 poz.
Twórcy
  • Department of Civil Engineering, Erzurum Technical University, Erzurum, Turkey
  • Department of Civil Engineering, Erzurum Technical University, Erzurum, Turkey
  • Department of Civil Engineering, Istanbul Technical University, Istanbul, Turkey
Bibliografia
  • 1. Ardia D et al (2016) Global optimization by differential evolution. R J 3(1):27–34
  • 2. Bai P et al (2016) Investigation of changes in the annual maximum flood in the Yellow River basin, China. Quatern Int 392:168–177
  • 3. Bayazit M, Avci I (1997) Water resources of Turkey: potential, planning, development and management. Water Resour Develop 13(4):443–452
  • 4. Benameur S et al (2017) Complete flood frequency analysis in Abiod watershed, Biskra (Algeria). Nat Hazards 86:519–534
  • 5. Bezak N, Brilly M, Sraj M (2014) Comparison between the peaks-over-threshold method and the annual maximum method for flood frequency analysis. Hydrol Sci J-J Des Sci Hydrologiques 59(5):959–977
  • 6. Borner J et al (2007) Rainfall or price variability: What determines rangeland management decisions? A simulation-optimization approach to South African savannas. Agric Econ 37(2–3):189–200
  • 7. Can I, Tosunoglu F (2013) Estimating T-year flood confidence intervals of rivers in Coruh basin, Turkey. J Flood Risk Manage 6(3):186–196
  • 8. Cao R et al (2009) Modelling consumer credit risk via survival analysis. Sort-Stat Oper Res Trans 33:3–9
  • 9. Davison AC, Hinkley DV, Schechtman E (1986) Efficient Bootstrap Simulation. Biometrika 73(3):555–566
  • 10. Garijo C, Mediero L (2018) Influence of climate change on flood magnitude and seasonality in the Arga River catchment in Spain. Acta Geophys 66:769–790
  • 11. Gharib A, Davies EGR, Goss GG, Faramarzi M (2017) Assessment of the combined effects of threshold selection and parameter estimation of generalized pareto distribution with applications to flood frequency analysis. Water 9(9):692
  • 12. Haddad K, Rahman A (2011) Selection of the best fit flood frequency distribution and parameter estimation procedure: a case study for Tasmania in Australia. Stoch Env Res Risk Assess 25(3):415–428
  • 13. Hailegeorgis TT, Alfredsen K (2017) Regional flood frequency analysis and prediction in ungauged basins including estimation of major uncertainties for mid-Norway. J Hydrol Regional Studies 9:104–126
  • 14. Hassan MU, Hayat O, Noreen Z (2019) Selecting the best probability distribution for at-site flood frequency analysis; a study of Torne River. Sn Appl Sci 1(12):1629
  • 15. Hattermann FF, Kundzewicz ZW, Huang S, Vetter T, Gerstengarbe FW, Werner P (2013) Climatological drivers of changes in flood hazard in Germany. Acta Geophys 61:463–477
  • 16. Heidarpour B et al (2017) Effect of extraordinary large floods on at-site flood frequency. Water Resour Manage 31(13):4187–4205
  • 17. Hu L, Nikolopoulos EI, Marra F, Anagnostou EN (2020) Sensitivity of flood frequency analysis to data record, statistical model, and parameter estimation methods: an evaluation over the contiguous United States. J Flood Risk Manage 13(1)
  • 18. Jiang ZH, Ma WC (2018) Integrating differential evolution optimization to cognitive diagnostic model estimation. Frontiers Psychol 9(6)
  • 19. Kankal M, Akçay F (2019) Investigation of hydroelectric energy situation in Eastern Black Sea Basin. Omer Halisdemir Univ J Eng Sci 8(2):892–901
  • 20. Kasiviswanathan KS, HE JX, Tay JH (2017) Flood frequency analysis using multi-objective optimization based interval estimation approach. J Hydrol 545:251–262
  • 21. Keskinturk T (2006) Differential evolution algorithm. Istanbul Commerce Univ J Sci 9:85–99
  • 22. Lang M, Ouarda TBMJ, Bobee B (1999) Towards operational guidelines for over-threshold modeling. J Hydrol 225(3–4):103–117
  • 23. Liu C, Han H, Wang C, Qiao J (2014) An adaptive Differential Evolution Algorithm for Sewer Networks Design, Proceeding of the 11th World Congress on Intelligent Control and Automation Shenyang, China.
  • 24. Meylan P, Favre A, Musy A (2012) Predictive hydrology: a frequency analysis approach Boca Raton. CRC Press
  • 25. Mlynski D, Walega A, Stachura T, Kaczor G (2019) A new empirical approach to calculating flood frequency in ungauged catchments: a case study of the upper vistula Basin, Poland. Water 11(3):601
  • 26. Mullen KM et al (2011) DEoptim: an R package for global optimization by differential evolution. J Stat Softw 40(6):1–26
  • 27. Opere AO, Mkhandi S, Willems P (2006) At site flood frequency analysis for the Nile Equatorial basins. Phys Chem Earth 31(15–16):919–927
  • 28. Price K, Storn R, Lampinen J (2005) Differential Evolution: A Practical Approach to Global Optimization Verlag. Springer, Berlin
  • 29. Rahman AS et al (2013) A study on selection of probability distributions for at-site flood frequency analysis in Australia. Nat Hazards 69(3):1803–1813
  • 30. Rahman A et al (2018) Development of regional flood frequency analysis techniques using generalized additive models for Australia. Stoch Env Res Risk Assess 32(1):123–139
  • 31. Renard B et al (2013) Data-based comparison of frequency analysis methods: a general framework. Water Resour Res 49(2):825–843
  • 32. Seckin N, Yurtal R, Haktanir T (2014) Regional Frequency analysis for gauged and ungauged cathments of seyhan river basin in Turkey. J Eng Res 2:47–70
  • 33. Sepehri M, Malekinezhad H, Hosseini SZ, Ildoromi AR (2019) Assessment of flood hazard mapping in urban areas using entropy weighting method: a case study in Hamadan city. Iran Acta Geophysica 67:1435–1449
  • 34. Sleziak P, Holko L, Danko M, Parajka J (2020) Uncertainty in the number of calibration repetitions of a hydrologic model in varying climatic conditions. Water 12:2362
  • 35. Storn R, PRICE K (1997) Differential evolution: a simple and efficient heuristic for global optimization over continuous spaces. J Global Optim 11(4):341–359
  • 36. Strupczewski WG, Singh VP, Weglarczyk S (2002) Asymptotic bias of estimation methods caused by the assumption of false probability distribution. J Hydrol 258(1–4):122–148
  • 37. Tosunoglu F (2018) Accurate estimation of T year extreme wind speeds by considering different model selection criterions and different parameter estimation methods. Energy 162:813–824
  • 38. Üçüncü O, Önsoy H, Yüksek Ö (1994) A Study on the environmental effects of 20 June 1990 flood in Trabzon and its neighborhood, Turkey. 2nd International Conference on River Flood Hydraulics. New York, England.
  • 39. Uzlu E, Akpinar A, Komurcu MI (2011) Restructuring of Turkey’s electricity market and the share of hydropower energy: the case of the Eastern Black Sea Basin. Renewable Energy 36(2):676–688
  • 40. Volpi E, Fiori A, Grimaldi S, Lombardo F, Koutsoyiannis D (2015) One hundred years of return period: strengths and limitations. Water Resour Res 51:8570–8585. https://doi.org/10.1002/2015WR017820
  • 41. Volpi E, Fiori A, Grimaldi S, Lombardo F, Koutsoyiannis D (2019) Save hydrological observations! Return period estimation without data decimation. J Hydrol 571:782–792
  • 42. Xu WT et al (2018) An Adaptive Metropolis-Hastings optimization algorithm of Bayesian estimation in non-stationary flood frequency analysis. Water Resour Manage 32(4):1343–1366
  • 43. Yilmaz M, Tosunoğlu F, Demirel MC (2021) Taşkın Frekansı Analizinde Klasik Yöntemler ve Alternatif Bir Parametre Tahmin Yönteminin Karşılaştırılması. J Inst Sci Technol. https://doi.org/10.21597/jist.805365
  • 44. Yuksek O, Kankal M, Ucuncu O (2013) Assessment of big floods in the Eastern Black Sea Basin of Turkey. Environ Monit Assess 185(1):797–814
  • 45. Zaghloul M, Papalexiou SM, Elshorbagy A, Coulibaly P (2020) Revisiting flood peak distributions: a pan-Canadian investigation. Adv Water Resour 145:103720
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bdd62c9c-9bd4-41b8-95d9-03bdea27fa12
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.