Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In order to improve the measurement accuracy of pressure sensors, a method based on gray wolf optimization (GWO) to optimize kernel extreme learning machine (KELM) is proposed to address the problem of nonlinear drift that can be easily affected by temperature in the working environment. Firstly, the fast search capability of the GWO algorithm is used to find optimal regularization coefficients and kernel function parameters of the KELM algorithm; secondly, the random mapping of the traditional ELM algorithm is replaced by the kernel mapping of the KELM algorithm to improve the generalization and stability degradation brought by the random assignments. Finally, the voltage signal values under different temperature and pressure environments are obtained through calibration experiments and compensated by the GWO-KELM algorithm. The results show that the GWO-KELM method has a better compensation effect compared with the traditional BP neural network with a full-scale error of 0.13% (FS), the ELM algorithm with a full-scale error of 0.12%FS, and the KELM algorithm with a full-scale error of 0.12% in the range of 0 to 700 kPa absolute pressure and -40˚ to 70˚. The full-scale error is only 0.07% and the maximum absolute error is as low as 0.5446 kPa, which improves the accuracy index by one order of magnitude.
Czasopismo
Rocznik
Tom
Strony
1--14
Opis fizyczny
Bibliogr. 43 poz., rys., tab., wykr., wzory
Twórcy
autor
- School of Aeronautics and Astronautics, Sun Yat-sen University, Shenzhen, China
autor
- School of Aeronautics and Astronautics, Sun Yat-sen University, Shenzhen, China
autor
- School of Aeronautics and Astronautics, Sun Yat-sen University, Shenzhen, China
autor
- School of Aeronautics and Astronautics, Sun Yat-sen University, Shenzhen, China
autor
- School of Aeronautics and Astronautics, Sun Yat-sen University, Shenzhen, China
Bibliografia
- [1] Xu, T., Wang, H., Xia, Y., Zhao, Z., Huang, M., Wang, J., Zhao, L., Zhao, Y., & Jiang, Z. (2017). Piezoresistive pressure sensor with high sensitivity for medical application using peninsula-island structure. Frontiers of Mechanical Engineering, 12(4), 546-553. https://doi.org/10.1007/s11465-017-0447-9
- [2] Pramanik, C., & Saha, H. (2006). Low Pressure Piezoresistive Sensors for Medical Electronics Applications. Materials and Manufacturing Processes, 21(3), 233-238. https://doi.org/10.1080/10426910500464446
- [3] Ginggen, A., Tardy, Y., Crivelli, R., Bork, T., & Renaud, P. (2008). A Telemetric Pressure Sensor System for Biomedical Applications. IEEE Transactions on Biomedical Engineering, 55(4), 1374-1381. https://doi.org/10.1109/tbme.2007.913908
- [4] Gao, Y., Xiao, T., Li, Q., Chen, Y., Qiu, X., Liu, J., Bian, Y., & Xuan, F. (2022). Flexible microstructured pressure sensors: design, fabrication and applications. Nanotechnology, 33(32), 322002. https://doi.org/10.1088/1361-6528/ac6812
- [5] Jakoby, B., Eisenschmid, H., & Herrmann, F. (2002). The potential of microacoustic SAW- and BAW-based sensors for automotive applications - a review. IEEE Sensors Journal, 2(5), 443-452. https://doi.org/10.1109/jsen.2002.806748
- [6] Han, X., Du, W., Chen, M., Wang, X., Zhang, X., Li, X., Li, J., Peng, Z., Pan, C., & Wang, Z.L. (2017). Visualization Recording and Storage of Pressure Distribution through a Smart Matrix Based on the Piezotronic Effect. Advanced Materials, 29(26). https://doi.org/10.1002/adma.201701253
- [7] Javed, Y., Mansoor, M., & Shah, I.A. (2019). A review of principles of MEMS pressure sensing with its aerospace applications. Sensor Review, 39(5), 652-664. https://doi.org/10.1108/sr-06-2018-0135
- [8] Angelidis, D.T. (1992). Optical micromachined pressure sensor for aerospace applications. Optical Engineering, 31(8), 1638. https://doi.org/10.1117/12.58838
- [9] Cheng, C., Yao, J., Xue, H., Lu, Y., Wang, J., Chen, D., & Chen, J. (2022). A MEMS Resonant Differential Pressure Sensor with High Accuracy by Integrated Temperature Sensor and Static Pressure Sensor. IEEE Electron Device Letters, 43(12), 2157-2160. https://doi.org/10.1109/led.2022.3211886
- [10] Zhao, C., & Kong, D. (2020). An indirect comparison quasi-static calibration method for piezoelectric pressure sensors based on an inverse model. Measurement, 159, 107778. https://doi.org/10.1016/j.measurement.2020.107778
- [11] Yue, Y.-L., Xu, S.-J., & Zuo, X. (2022). Nonlinear correction method of pressure sensor based on data fusion. Measurement, 199, 111303. https://doi.org/10.1016/j.measurement.2022.111303
- [12] Tang, Z., Wu, W., Gao, J., Yang, P., Hussain, A., Luo, J., Tao, R., Fu, C., & Li, T. (2022). Improving Water Pressure Measurement Using Temperature-Compensated Wireless Passive SAW Bidirectional RDL Pressure Sensor. IEEE Transactions on Instrumentation and Measurement, 71, 1-11. https://doi.org/10.1109/tim.2021.3120146
- [13] Pereira, R. dos S., & Cima, C.A. (2021). Thermal Compensation Method for Piezoresistive Pressure Transducer. IEEE Transactions on Instrumentation and Measurement, 70, 1-7. https://doi.org/10.1109/tim.2021.3092789
- [14] Zhang, C.C., Kang, Z.P., Zhao, N., Lei, P. and Yan, B. (Mar 2023). A Bilayer Thin-Film Strain Gauge with Temperature Self-Compensation. IEEE Sens. J., 23, 6, 5601-5608. https://doi.org/10.1109/jsen.2023.3238328
- [15] Zhao, G., Yin, J., Wu, L., & Feng, Z. (2020). Ultrastable and Low-Noise Self-Compensation Method for Circuit Thermal Drift of Eddy Current Sensors Based on Analog Multiplier. IEEE Transactions on Industrial Electronics, 67(10), 8851-8859. https://doi.org/10.1109/tie.2019.2949511
- [16] Ameli, A., Ghafouri, M., Salama, M.M.A., & El-Saadany, E.F. (2022). An Auxiliary Framework to Mitigate Measurement Inaccuracies Caused by Capacitive Voltage Transformers. IEEE Transactions on Instrumentation and Measurement, 71, 1-11. https://doi.org/10.1109/tim.2022.3142040
- [17] Anandanatarajan, R., Mangalanathan, U., & Gandhi, U. (2022). Deep Neural Network Based Linearization and Cold Junction Compensation of Thermocouple. IEEE Transactions on Instrumentation and Measurement, 1-1. https://doi.org/10.1109/tim.2022.3227982
- [18] Pan, Q., Sun, Y., Su, M., Chen, S., Cai, Z., Zhang, Z., Zou, M., Chen, B., Mikhailova, J.V., Zuev, D., & Song, Y. (2022). Circular Subwavelength Photodetectors for 3D Space Exploration. Advanced Optical Materials, 10(6). https://doi.org/10.1002/adom.202102163
- [19] Long, H., Zhang, L., Ma, H., Li, J., Xia, J., Zhang, Y., & Chen, J. (2022). Heterogeneous Integration System in Display (HISiD) for Next-Generation Terminal Device. IEEE Transactions on Components, Packaging and Manufacturing Technology, 12(5), 731-739. https://doi.org/10.1109/tcpmt.2022.3167729
- [20] Yang, J., Yan, T., & Sun, W. (2023). Polynomial Fitting and Interpolation Method in TDOA Estimation of Sensors Network. IEEE Sensors Journal, 23(4), 3837-3847. https://doi.org/10.1109/jsen.2022.3232625
- [21] Li, Y., Yao, S., Zhang, R., & Yang, C. (2020). Analyzing host security using D-S evidence theory and multisource information fusion. International Journal of Intelligent Systems, 36(2), 1053-1068. https://doi.org/10.1002/int.22330
- [22] Badawi, D., Agambayev, A., Ozev, S., & Cetin, A.E. (2021). Real-Time Low-Cost Drift Compensation for Chemical Sensors Using a Deep Neural Network with Hadamard Transform and Additive Layers. IEEE Sensors Journal, 21(16), 17984-17994. https://doi.org/10.1109/jsen.2021.3084220
- [23] Tsai, P.-C., Cheng, C.-C., Chen, W.-J., & Su, S.-J. (2020). Sensor placement methodology for spindle thermal compensation of machine tools. The International Journal of Advanced Manufacturing Technology, 106(11-12), 5429-5440. https://doi.org/10.1007/s00170-020-04932-8
- [24] Wang, H., Zeng, Q., Zhang, Z., & Zou, Y. (2023). A novel whale-based algorithm for optimizing the ANN approach: application to temperature compensation in pressure scanner calibration systems. Measurement Science and Technology, 34(9), 095904. https://doi.org/10.1088/1361-6501/acd26d
- [25] Ge, Y., Shen, L., & Sun, M. (2021). Temperature Compensation for Optical Fiber Graphene MicroPressure Sensor Using Genetic Wavelet Neural Networks. IEEE Sensors Journal, 21(21), 24195-24201.
- [26] Xie, J., Li, Z., & Zou, X. (2023). Dynamic Temperature Compensation of Pressure Sensors in Migratory Bird Biologging Applications. Electronics, 12(20), 4373. https://doi.org/10.3390/electronics12204373
- [27] Zhang, B., Tan, R., & Lin, C.-J. (2020). Forecasting of e-commerce transaction volume using a hybrid of extreme learning machine and improved moth-flame optimization algorithm. Applied Intelligence, 51(2), 952-965. https://doi.org/10.1007/s10489-020-01840-y
- [28] Lou, J., Jiang, Y., Shen, Q., Wang, R., & Li, Z. (2023). Probabilistic Regularized Extreme Learning for Robust Modeling of Traffic Flow Forecasting. IEEE Transactions on Neural Networks and Learning Systems, 34(4), 1732-1741. https://doi.org/10.1109/tnnls.2020.3027822
- [29] Li, J., Hong, Z., Zhang, C., Wu, J., & Yu, C. (2024). A novel hybrid model for crude oil price forecasting based on MEEMD and Mix-KELM. Expert Systems with Applications, 246, 123104. https://doi.org/10.1016/j.eswa.2023.123104
- [30] Bisoi, R., Dash, P.K., & Das, P.P. (2018). Short-term electricity price forecasting and classification in smart grids using optimized multikernel extreme learning machine. Neural Computing and Applications, 32(5), 1457-1480. https://doi.org/10.1007/s00521-018-3652-5
- [31] Sun, S., Wang, S., Wei, Y., & Zhang, G. (2020). A Clustering-Based Nonlinear Ensemble Approach for Exchange Rates Forecasting. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 50(6), 2284-2292. https://doi.org/10.1109/tsmc.2018.2799869
- [32] Zou, M., Xu, Y., Jin, J., Chu, M., & Huang, W. (2023). Accurate Nonlinearity and Temperature Compensation Method for Piezoresistive Pressure Sensors Based on Data Generation. Sensors, 23(13), 6167. https://doi.org/10.3390/s23136167
- [33] Li, J., Hu, G., Zhou, Y., Zou, C., Peng, W., & Alam SM, J. (2017). Study on Temperature and Synthetic Compensation of Piezo-Resistive Differential Pressure Sensors by Coupled Simulated Annealing and Simplex Optimized Kernel Extreme Learning Machine. Sensors, 17(4), 894. https://doi.org/10.3390/s17040894
- [34] Liu, Y., & Wang, J. (2022). Transfer learning based multi-layer extreme learning machine for probabilistic wind power forecasting. Applied Energy, 312, 118729. https://doi.org/10.1016/j.apenergy.2022.118729
- [35] Qin, Q., Huang, Z., Zhou, Z., Chen, Y., & Zhao, W. (2022). Hodrick-Prescott filter-based hybrid ARIMA-SLFNs model with residual decomposition scheme for carbon price forecasting. Applied Soft Computing, 119, 108560. https://doi.org/10.1016/j.asoc.2022.108560
- [36] Lu, H., Ma, X., Huang, K., & Azimi, M. (2020). Carbon trading volume and price forecasting in China using multiple machine learning models. Journal of Cleaner Production, 249, 119386. https://doi.org/10.1016/j.jclepro.2019.119386
- [37] Sulaiman, S. M., Jeyanthy, P.A., Devaraj, D., & Shihabudheen, K.V. (2022). A novel hybrid short-term electricity forecasting technique for residential loads using Empirical Mode Decomposition and Extreme Learning Machines. Computers & Electrical Engineering, 98, 107663. https://doi.org/10.1016/j.compeleceng.2021.107663
- [38] Luo, J., & Liu, Z. (2019). Novel grey wolf optimization based on modified differential evolution for numerical function optimization. Applied Intelligence, 50(2), 468-486. https://doi.org/10.1007/s10489-019-01521-5
- [39] Mohanty, F., Rup, S., Dash, B., Majhi, B., & Swamy, M.N.S. (2018). A computer-aided diagnosis system using Tchebichef features and improved grey wolf optimized extreme learning machine. Applied Intelligence, 49(3), 983-1001. https://doi.org/10.1007/s10489-018-1294-z
- [40] Tong, S., Guo, M., Tian, Y., Le, J., Zhang, D., & Zhang, H. (2024). Multi-objective optimization design of scramjet nozzle based on grey wolf optimization algorithm and kernel extreme learning machine surrogate model. Physics of Fluids, 36(2). https://doi.org/10.1063/5.0188627
- [41] Roushangar, K., Shahnazi, S., & Sadaghiani, A.A. (2022). An efficient hybrid grey wolf optimization-based KELM approach for prediction of the discharge coefficient of submerged radial gates. Soft Computing, 27(7), 3623-3640. https://doi.org/10.1007/s00500-022-07614-7
- [42] Zhao, X., Chen, Y., Wei, G., Pang, L., & Xu, C. (2023). A comprehensive compensation method for piezoresistive pressure sensor based on surface fitting and improved grey wolf algorithm. Measurement, 207, 112387. https://doi.org/10.1016/j.measurement.2022.112387
- [43] Wen, X., Jaxa-Rozen, M., & Trutnevyte, E. (2022). Accuracy indicators for evaluating retrospective performance of energy system models. Applied Energy, 325, 119906. https://doi.org/10.1016/j.apenergy.2022.119906
- [44] Zhou, J., Lin, H., Jin, H., Li, S., Yan, Z., & Huang, S. (2022). Cooperative prediction method of gas emission from mining face based on feature selection and machine learning. International Journal of Coal Science & Technology, 9(1). https://doi.org/10.1007/s40789-022-00519-8
Uwagi
This work was supported by the National Natural Science Foundation of China (No. 61174120) and the Scientific Research and Innovation Program of the Chinese Academy of Management Sciences (No. JKSC14568).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bdd393c8-0ccf-4b86-bd2d-a5179179226e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.