Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The genetic algorithm method is a new method used to obtain radiation beams that meet the IAEA requirements. This method is used in optimization of configurations and compositions of materials that compose double layered Beam Shaping Assembly (BSA). The double layered BSA is modeled as having two layers of material for each of the components, which are the moderator, reflector, collimator, and filter. Up to 21st generation, the optimization results in four (4) individuals having the capacity to generate the most optimum radiation beams. The best configuration, producing the most optimum radiation beams, is attained by using combinations of materials, that is by combining Al with either one of CaF2 and PbF2for moderator; combining Pb material with either Ni or Pb for reflector; combining Ni and either FeC or C for collimator, and FeC+LiF and Cd for fast and thermal neutron filter. The parameters of radiation resulted from the four configurations of double layer BSA adequately satisfy the standard of the IAEA.
Słowa kluczowe
Rocznik
Tom
Strony
157--164
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
autor
- Department of Physics, Faculty of Mathematics and Natural Sciences, GajahMada University, Indonesia
- Department, of Physics, Faculty of Mathematics and Natural Sciences, Jenderal Soedirman University, Indonesia
autor
- Department of Physics, Faculty of Mathematics and Natural Sciences, GajahMada University, Indonesia
autor
- Department of Physics, Faculty of Mathematics and Natural Sciences, GajahMada University, Indonesia
autor
- Department of Physics, Faculty of Mathematics and Natural Sciences, GajahMada University, Indonesia
autor
- Department of Physics, Faculty of Mathematics and Natural Sciences, GajahMada University, Indonesia
autor
- Department of Physics, Faculty of Mathematics and Natural Sciences, GajahMada University, Indonesia
Bibliografia
- [1] Sauerwein WAG, Wittig A, Moss R, Nakagawa Y (Eds.). Neutron Capture Therapy: Principle and Application. Springer-Verlag Berlin Heidelberg. 2012.
- [2] Hassanein MA, Hassan, HM, Nader MA, et al. An optimized epithermal BNCT beam design for research reactors. Prog Nucl Energy. 2018;106:455-564.
- [3] Savolainen S, Kortesniemi M, Timonen M, et al. Boron neutron capture therapy (BNCT) in Finland: Technological and physical prospects after 20 years of experiences. Phys Med. 2013;29(3):233-248.
- [4] Rasouli FS, Masoudi SF. Design and optimization of a beam shaping assembly for BNCT based on D–T neutron generator and dose evaluation using a simulated head phantom. Appl Radiat Isot. 2012;70(12):2755-2762.
- [5] Kreiner JA, Bergueiro J, Cartelli D, et al. Present status of Accelerator-Based BNCT. Rep Pract Oncol Radiother. 2016;2(2)1:95-101.
- [6] Daqian H, Haocheng Z, Wenbao J, et al. Design of a setup for 252Cf neutron source for storage and analysis purpose. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 2016;386:1-3.
- [7] Tanaka H, Sakurai Y, Suzuki M, et al. Experimental verification of beam characteristics for cyclotron-based epithermal neutron source (C-BENS ). Appl Radiat Isot. 2011;69(12):1642-1645.
- [8] Lai BL, Sheu RJ. Shielding analyses of an AB-BNCT facility using Monte Carlo simulations and simplified methods. EPJ Web of Conferences. 2017;153:07023.
- [9] Monshizadeh M, Kasesaz, Y, Khalafi H, et al. MCNP design of thermal and epithermal neutron beam for BNCT at the Isfahan MNSR. Prog Nucl Energy. 2015;83:427-432.
- [10] Bavarnegin E, Kasesaz Y, Wagner MF. Neutron beams implemented at nuclear research reactors for BNCT. JINST.2017;12:P05005.
- [11] Turkmen M, Ergun S, Colak U. A New Method in beam shaping: Multi-Objective Genetic Algorithm Method Coupled with a Monte Carlo based reactor physics code. Prog Nucl Energy. 2017;99:165-176.
- [12] Kasesaz Y, Khala H, Rahmani F. Optimization of the beam shaping assembly in the D – D neutron generators-based BNCT using the response matrix method. Appl Radiat Isot. 2013;82:55-59.
- [13] McCall J. Genetic algorithms for modeling and optimization. J Comput Appl Math. 2005;184(1):205-222.
- [14] Hofler A, Terzic B, Kramer M. Genetic Algorithms and their Applications in Accelerator Physics. Phys Rev ST Accel Beams. 2013;16:010101.
- [15] Koreshi ZU, Khan H. Optimization of Moderator Design for Explosive Detection by Thermal Neutron Activation Using a Genetic Algorithm. ASME J Nucl Eng Radiat Sci. 2016;2(3):031018.
- [16] Asbury S, Holloway, JP. Designing shields for keV photons with genetic algorithms. International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering. Rio de Janeiro. RJ, Brazil. on CD-ROM, Latin American Section (LAS) / American Nuclear Society (ANS) ISBN 978-85-63688-00-2. 2011;1-9.
- [17] Pelowitz DB. RSICC Computer Code Collection MCNPX 2.6.0. New Mexico: Los Alamos National Library. 2008.
- [18] Konak A, Coit DW, Smith AE. Multi-objective optimization using genetic algorithms : A tutorial. Reliability Engineering & System Safety. 2006;91(9):992-1007.
- [19] Rocha MCBI, Parente E, Melo MCA. Hybrid shared/ distributed memory parallel genetic algorithm for optimization of the laminated composite. Composite structures. 2014;107:288-297.
- [20] Kim SB, Moon HJ. Use of a Genetic Algorithm in the Search for a Near-optimal Shielding Design. Annals of Nuclear Energy. 2010;37(2):120-129.
- [21] International Atomic Energy Agency. Current Status of Neutron Capture Therapy. Vienna: International Atomic Energy Agency. 2011.
- [22] Ivakhin VS, Tikhomirov GV, Bolozdynya, AI, et al. Modeling of Filters for Formation of Mono-Energetic Neutron Beams in the Research Reactor IRT MEPhI. The 10th international conference. GLOBAL 2011. Toward and over the Fukushima Daiichi accident. Proceedings. Makuhari, Japan.2011.
- [23] Ma WC, Lv CJ, Zhang QG, et al. Neutron-induced reactions on AlF3 studied using the optical model. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms.2 015;356-357:42-45.
- [24] Fantidis GJ, Saitioti E, Bandekas VD, et al. Optimised BNCT facility based on a compact D-D neutron generator. Int J Radiat Res. 2013;11(4):207-214.
- [25] Asnal M, Liamsuwan T, Onjun T. An Evaluation on the Design of Beam Shaping Assembly Based on the D-T reaction for BNCT. J Phys: Conf Series. 2015;611:012031.
- [26] Osawa Y, Imoto S, Kusaka S, et al. Development of An Epithermal Neutron Field for Fundamental Researches for BNCT with A DT Neutron Source. EPJ Web of Conferences. 2017;153:04008.
- [27] Adib M, Habib N, Bashter I, et al. Simulation study of accelerator-based quasi-mono-energetic epithermal neutron beams for BNCT. Appl Radiat Isot. 2016;107:98-102.
- [28] Hu G, Hu HS, Wang S, et al. The “neutron channel design” – A method for gaining the desired neutrons.AIP Advances. 2016;6:125025.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bdd2334b-b5a2-4a5d-baac-2b8d05629121
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.