PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Peat and lignite leaching process with tetralin in autoclave to produce oil

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Instead of directly burning a lignite having low calorific value and peat, the Elbistan lignite (L) and the Adiyaman peat (P) were mixed and leached in an autoclave to obtain an oil to not only provide the demand for energy but also protect the environment. The effects of the peat ratio in the mixture on the properties of co-liquefaction products (oil, char, asphaltene, and preasphaltene) and oil yield were investigated in details. The products were characterized by XRD, FTIR, and elemental analysis. In addition, the composition of the oil was identified by GC/MS, showing that the peat ratio did not affect the chemical composition of the oil due to the high lignin content and the nearly same elemental compositions. On the other hand, the oil yield for a co-liquefaction process was found as 34.3% to be higher than the average value of oil yields obtained from the individual feeds (24.3% for lignite and 28% for peat), showing the synergistic effects between the lignite and peat. The obtained oil was paraffinic-low waxy oil with 5138.62 kcal/kg of calorific value and 0.94 g/cm3 density. Finally, it was suggested that the production of a more valuable product using the peat and the lignite having low calorific value will not only contribute more to the country's economy in future but also be better for the environment, instead of directly burning them.
Rocznik
Strony
334--342
Opis fizyczny
Bibliogr. 43 poz., rys., tab.
Twórcy
autor
  • Iskenderun Technical University, Department of Engineering Science, 31200, Hatay, Turkey
autor
  • Borte Build Company, 06531, Ankara, Turkey
Bibliografia
  • AKASH B.A., MUCHMORE C.B., LALVANI S.B., 1994. Coliquefaction of coal and newsprint-derived lignin, Fuel Processing Technology, 37(3), 203-210.
  • ANONYMOUS, 2016, http://www.enerji.gov.tr/tr-TR/Sayfalar/Petrol (on-line access on 10 Feb, 2016).
  • BENAVENTE V., FULLANA A., 2015. Torrefaction of olive mill waste, Biomass Bioenergy, 73, 186-194.
  • CHEN H., ZHAO W., LIU N., 2011. Thermal analysis and decomposition kinetics of Chinese forest peat under nitrogen and air atmospheres, Energy & Fuel, 25, 797-803.
  • ELLIS N., MASNADI M.S., ROBERTS D.G., KOCHANEK M.A., ILYUSHECHKIN A.Y., 2015. Mineral matter interactions during co-pyrolysis of coal and biomass and their impact on intrinsic char co-gasification reactivity, Chemical Engineering Journal, 279, 402-408.
  • FERNANDEZ-TURIEL J.L., GEORGAKOPOULOS A., GIMENO D., PAPASTERGIOS G., KOLOVOS N., 2004. Ash deposition in a pulverized coal-fired power plant after high calcium lignite combustion, Energy & Fuels, 18, 1512-1518.
  • FIGUEROA MURCIA D.C., HERNAANDEZ M.R., GUPTA R., DE KLERK A., 2011. Solvent extraction of coal at low temperature: Influence of time and particle size. Prepr. Pap.-Am. Chem. Soc., Div, Fuel Chem, 56, 2, 304-305.
  • FUCHSMAN C.H., 1989, Peat: Industrial Chemistry and Technology, Academic Press, New York.
  • GUO Z., BAI Z., BAI J., WANG Z., LI W., 2011. Co-liquefaction of lignite and sawdust under syngas, Fuel Processing Technology, 92 (1), 119-125.
  • HAYES D.J.M., 2013. Second-generation biofuels: why they are taking so long. WIREs," Energy Environ, 2, 304-334.
  • HUA Z., CAI Z.-Y., SHUI H.-F., LEI Z.-P., WANG Z.-C., LI H.-P., 2011. Co-liquefaction properties of Shenfu coal and rice straw. Journal of Fuel Chemistry and Technology, 39(10), 721-727.
  • HUANG X., REIN G., CHEN H., 2015. Computational smoldering combustion: Predicting the roles of moisture and inert contents in peat wildfires, Proceedings of the Combustion Institute, 35, 2673-2681.
  • INABA A., OKADA K., 1995. Coal utilization technology for reducing carbon dioxide emission, in: J.A. Pajares, J.M.D. Tasc_on (Eds.), Coal Science and Technology, Elsevier Science, 1919-1922.
  • JIANG M., ZHOU R., HU J., WANG F., WANG J., 2012. Calcium-promoted catalytic activity of potassium carbonate for steam gasification of coal char: influences of calcium species, Fuel, 99, 64-71.
  • JINGCHONG Y., ZONQING B., WEN L., JIN B., 2014. Direct liquefaction of a Chinese brown coal and CO2 gasification of the residues, Fuel, 136, 280-286.
  • JIULING Y., HAIXIANG C., WEITAO Z., JIANJUN Z., 2016. TG–FTIR-MS study of pyrolysis products evolving from peat, Journal of Analytical and Applied Pyrolysis, 117, 296-309.
  • ISHIKAWAT A., KUGA S., OKANO T., 1998. Determination of parameters in mechanical model for cellulose III fibre, Polymer, 39, 1875-1878.
  • KARACA H., DEPCI T., KARTA M., COSKUN MA., 2016. Liquefaction Potential of Adiyaman Peat. IOP Conf Ser Earth Environ Sci 44:1-6.
  • KARACA H., KOYUNOGLU C., 2010. Co-liquefaction of Elbistan lignite and biomass. Part I: The effect of the process parameters on the conversion of liquefaction products, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 32, 495-511.
  • KARACA F., BOLAT E., 2002. Coprocessing of a Turkish lignite with acellulosic waste material 2. The effect of coprocessing on liquefaction yields at different reaction pressures and sawdust/lignite ratios, Fuel Processing Technology, 75, 109-116.
  • KIM J.K., 2011. Co-combustion Technology of Russian Peat and its Spontaneous Ignition, Korea Electric Power Corporation’s Research Institute, R&D report, TM.1324.M2011.0655.
  • LI L., HUANG S., WU S., WU Y., GAO J., GU J., QIN X., 2015. Fuel properties and chemical compositions of the tar produced from a 5 MW industrial biomass gasification power generation plant, Journal of the Energy Institute, 88, 126-35.
  • MATSUMURA Y., NONAKA H., YOKURA H., TSUTSUMI A., YOSHIDA K., 1999. Co-liquefaction of coal and cellulose in supercritical water, Fuel, 78(9), 1049-1056.
  • KARTA M., 2016. Co-liquefaction of elbistan lignite and biomass, Master Thesis, Inonu University, Malatya, Turkey.
  • METHAKHUP S., NGAMPRASERTSITH S., PRASASSARAKICH P., 2007. Improvement of oil yield and its distribution from coal extraction using sulfide catalysts, Fuel, 86, 2485-2490.
  • NATHAN Y., SHOVAL S., SHRIKI D., PANZER G., 2010. Amorphous and short-ordered phase in coal fly ash, Report: GSI /03/, Jerusalem.
  • RYDELEK P., 2006. Application of Scanning Electron Microscope (SEM) in Peat Studies, Polish Journal of Environmental Studies, 15(5d), 117-121.
  • SEKINE Y., ISHIKAWA K., KIKUCHI E., MATSUKATA M., AKIMOTO A., 2006. Reactivity and structural change of coal char during steam gasification, Fuel, 85, 122-126.
  • SHUI H., SHAN C., CAI Z., WANG Z., LEI Z., REN S., PAN C., LI H., 2011. Co-liquefaction behavior of a sub-bituminous coal and sawdust, Energy, 36(11), 6645-6650.
  • SHUI H., SHAN C., CAI Z., WANG Z., LEI Z., REN S., PAN C., LI H., 2013. Co-liquefaction of rice straw and coal using different catalysts, Fuel, 109, 9-13.
  • SINGH K., ZONDLO J., 2017, Co-processing coal and torrefied biomass during direct liquefaction, Journal of the Energy Institute, 90, 497-504.
  • SONG C., SAINI A., YONEYAMA Y., 2000. A new process for catalytic liquefaction of coal using dispersed MoS2 catalyst generated in situ with added H2O, Fuel, 79(3), 249-261.
  • SPEIGHT J.G., 1994, The chemistry and technology of coal, 2nd ed. NY, Marcel Dekker, Inc, 334-356.
  • SUTCU H., 2007, Pyrolysis of Peat: Product Yield and Characterization, Korean Journal of Chemical Engineering, 24, 736-741.
  • STILLER A.H., DADYBURJOR D.B., WANN J., TIAN D., ZONDLO J.W., 1996. Co-processing of agricultural with coal and biomass waste, Fuel Processing Technology, 49, 167-175.
  • TENG H., SERIO M.A., BASSILAKIS R., SOLOMON P.R., 1992. The application of FT-IT methods to the characterization of coal-liquefaction process streams, Abstracts of Papers of the American Chemical Society American Chemical Society, 101.
  • TOLONEN J., 2000, The role of peat in Finnish greenhouse gas balances, Revue de l’energie, 328, 348-351.
  • TRAUTMANN M., LOWE A., TRAA Y., 2014. An alternative method for the production of second-generation biofuels, Green Chem., 16(8), 3710-3714.
  • WANG Z., SHUI H., PAN C., LI L., REN S., LEI Z., KANG S., WEI C., HU J., 2014. Structural characterization of the thermal extracts of lignite, Fuel Processing Technology, 120, 8-15.
  • XIAOHONG L., YANLI X., JIE F., QUN Y., WENYING L., XIAOFEN G., KE L., 2015. Co-pyrolysis of lignite and Shendong coal direct liquefaction residue, Fuel, 144, 342-348.
  • XU C., DONALD J., 2012. Upgrading peat to gas and liquid fuels in supercritical water with catalysts, Fuel, 102, 16-25.
  • YOUNAS R., HAO S., ZHANG L., ZHANG S., 2017. Hydrothermal liquefaction of rice straw with NiO nanocatalyst for bio-oil production, Renewable Energy, doi: 10.1016/ j.renene.2017.06.032.
  • ZHANG R., REN H., SUN D., BI J., 2008. Pyrolysis of a high-ash peat in supercritical water, Journal of Fuel Chemistry and Technology, 36(2), 129-33.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bdcfc278-2b72-4ce8-9b46-ac716010652b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.