Tytuł artykułu
Autorzy
Identyfikatory
Warianty tytułu
Increasing the share of secondary alloy in AlSi7Mg alloy castings – a challenge for the modern manufacturer
Języki publikacji
Abstrakty
Zwiększenie udziału złomu obiegowego wynika nie tylko z potrzeby ochrony środowiska przez zmniejszenie energochłonności produkcji i ilości odpadów oraz ograniczenia emisji gazów cieplarnianych i zużycia surowców naturalnych, ale również z optymalizacji kosztów produkcji. Wiąże się to jednak z zachowaniem wymaganych właściwości odlewów i uwzględnieniem wpływu zanieczyszczeń na kształtowanie struktury stopów aluminium. Badania dotyczą więc procesu krystalizacji stopu EN AC-AlSi7Mg, do którego wprowadzono żelazo (w postaci zaprawy Al-Fe – jako substytut złomu obiegowego) o zawartości od około 0,5 do 1,5wt.%. Analiza krzywych chłodzenia metodą ATD i badania mikrostruktury stopów Al-Si-Mg o zmiennej zawartości żelaza wykazała, że do około 0,4wt.%Fe, powstające fazy żelaza nie stanowią istotnego wpływu na mikrostrukturę. Wchodzą w skład wielofazowych eutektyk typu a(Al)+(Mg2Si,Fe)+b(Si) lub a(Al)+(AlXFeYSiZ)+b(Si), które krystalizują po eutektyce a(Al)+b(Si). W zakresie od około 0,45 do 0,9wt.%Fe następuje przedeutektyczna krystalizacja faz żelaza, głównie płytkowo-iglastej b-Al5FeSi. Przy udziale ponad 0,9%mas.Fe, morfologia tej fazy staje się jeszcze bardziej niekorzystna (na skutek krystalizacji pierwotnej) i towarzyszą jej liczne skupiska porowatości skurczowej, co ma wpływ na zmniejszenie właściwości mechanicznych, zwłaszcza plastyczności.
The increase in the share of secondary aluminum results not only from the need to protect the environment by reducing the energy consumption of production and the amount of waste and limiting greenhouse gas emissions and the consumption of natural resources, but also from the optimization of production costs. However, this is related to maintaining the required properties of castings and taking into account the influence of impurities on the formation of the structure of aluminum alloys. The research therefore concerns the crystallization process of the EN AC-AlSi7Mg alloy, to which iron was introduced (in the form of Al-Fe mortar - as a substitute for secondary alloy) with a content of approx. 0.5 to 1.5 wt.%. Analysis of cooling curves using the ATD method and microstructure studies of Al-Si-Mg alloys with variable iron content showed that up to approx. 0.4 wt.%Fe, the iron phases formed do not have a significant effect on the microstructure. They are part of multiphase eutectics of the (Al)+(Mg2Si,Fe)+ (Si) or (Al)+(AlXFeYSiZ)+ (Si), which crystallize after the (Al)+ (Si) eutectic. In the range from about 0.45 to 0.9 wt.%Fe, pre-eutectic crystallization of iron phases occurs, mainly plate-acicular -Al5FeSi. With a share of over 0.9 wt.%Fe, the morphology of this phase becomes even more unfavorable (due to primary crystallization) and is accompanied by numerous clusters of shrinkage porosity, which affects the reduction of mechanical properties, especially yield point.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
26--32
Opis fizyczny
Bibliogr. 33 poz., rys., tab.
Twórcy
autor
- Politechnika Śląska, Wydział Inżynierii Materiałowej, Katowice
autor
- Superior Industries Production Poland Sp. z o.o., Stalowa Wola
Bibliografia
- 1. Metal Recycling Factsheet. Europe Aluminium Market Overview 2024-2028. October 2024. https://circulareconomy.europa.eu/platform/sites/default/fUes/euric_metal_recycling_factsheet.pdf
- 2. Xinjin Cao and Campbell J.: Morphology of ß-Al- 5FeSi phase in Al-Si cast alloys. Materials Transaction 47, no.5, 2006,1303-1312
- 3. Taylor J.A.: The effect of iron in Al-Si cast alloys. www.researchgate.net/publication/43457790
- 4. Ebhota W.S., Tien-Chien Jen: Intermetallics formation and their effect on mechanical properties of Al-Si-X alloys. IntechOpen 2014. http://dx.doi.org/10.5772/intechopen.73188
- 5. Taylor J.A.: Iron-containing intermetallic phases in Al-Si based casting alloys. Procedia Materials Science 1, 2012, 19-33. DOI: 10.1016/j.ms-pro.2012.06.004
- 6. Zavadska D. Tillova E., Svesova I., Chalupova M., Kucharikova L., Belan J.: The effect of iron content on microstructure and porosity of secondary AlSi7Mg0.3 alloy. Periodica Polytechnica Transportation Engineering 47(4), 2019, 283-289, https://doi.org/10.3311/PPtr.12101
- 7. Orozco-Gonzales P., Castro-Roman M., Martinez A.I., Herrero-Trejo M„ Lopez A.A., Quispe-Marcatoma J.: Precipitation of Fe-rich intermetallic phase in liquid Al-13.58Si-ll.59Fe-l.19Mn alloy. Intermetallics 18, 2010, 1617-1622
- 8. Belov N.A., Aksenov A.A., Eskin D.G.: Iron in Aluminum Alloys. Impurity and Alloying Element. Taylor & Francis Inc, New York 2002
- 9. Guisen Liu, Mingyu Gong, Dongyue Xie, and Jian Wang: Structures and mechanical properties of Al-Al2Cu interfaces. Journal of Minerals, Metals & Materials Society, 2019. DOI: 10.1007/sll837-019-03333
- 10. Hurtalowa L., Tillova E., Chalupova M.: Identyfication and analysis of intermetallic phases in age-hardened recycled AlSi9Cu3 alloy. Archive of Mechanical Engineering LIX, No 4, 2012, 385-393. DOI: 10.2478/vl0180-012-0020-3
- 11. Lu L., Dahle A.K.: Iron-Rich Intermetallic Phases and Their Role in Casting Defect Formation in Hy- poeutectic Al-Si Alloys. Metallurgical and Mechanical Transactions 36A(13), 2005, 819-835. https://doi.org/10.1007/sll661-005-1012-4
- 12. Fan Xiao, Lu Li, Rongfeng Zhou, Yongkun Li, Yehua Jiang & Dehong Lu: Effect of melt treatment on Fe-rich phase in Al-25Si-2Fe-2Mn alloy. Advances in Materials Processing, 2018, 865-879. DOI: 10.1007/978-981-13-0107-0_85
- 13. Piątkowski J.: Crystallization of aluminum cast alloys. Archives of Foundry Engineering, Gliwice 2021
- 14. McMillan, C.A., Skerlos, S. J., Keoleian, G.A.: Evaluation of the Metals Industry's Position on Recycling and its Implications for Environmental Emissions. Journal of Industrial Ecology 16(3), 2012, 324-333. https://doi.org/10.1111/j.1530-9290.2012.00483.x
- 15. Moustafa, M. A.: Effect of iron content on the formation of ß-Al5FeSi and porosity in Al-Si eutectic alloys. Journal of Materials Processing Technology 209, 2009, 605-610. https://doi.org/10.1016/j. jmatprotec. 2008
- 16. Ferraro, S., Fabrizi, A., Timelli, G.: Evolution of sludge particles in secondary die-cast aluminium alloys as function of Fe, Mn and Cr contents. Materials Chemistry and Physics 153, 2015,168-179
- 17. Guo H.M., Yang X.J., Wang J.X.: Pressurized solidification of semi-solid aluminum die casting alloy A356. Journal of Alloys and Compounds 485,2009, 812-816
- 18. Piątkowski J., Roskosz S., Stach S.: The Influence of Selected High - Pressure Die Casting Parameters on the Porosity of EN AB-46000 Alloy Castings vol.18, 2024. https://doi.org/10.12913/22998624/191236
- 19. Bösch D., Pogatscher S., Hummel M., Fragner W., Uggowitzer P.J., Goken M., Hoppel H.W.: Secondary Al-Si-Mg high-pressure die casting alloys with enhanced ductility. Metallurgical and Materials Transactions 46A, 2015, 1035-1045
- 20. Ceschini L., Boromei I., Morri A., Seifeddine S., Svensson I.: Microstructure, tensile and fatigue properties of the Al-10% Si-2% Cu alloy with different Fe and Mn content cast under controlled conditions. Journal of Materials Processing Technology 209, 2009, 5669-5679. https://doi.org/10.1016/j.jmatprotec.2009.05.030
- 21. Samuel E., Samuel A.M., Doty H.W., Valtierra S., Samuel F.H.: Intermetallic phases in Al-Si based cast alloys: new perspective. International Journal of Cast Metals Research 27(2), 2014, 107-114. https://doi.org/10.1179/1743133613Y.0000000083
- 22. Ludwig T., Di Sabatino, M., Arnberg L.: Influence of oxide additions on the porosity development and mechanical properties of A356 Al alloy casting. International Journal of Metalcasting 6, 2012, 41-50
- 23. Samavedam S.: Calculation of Shrinkage of Sand Cast Aluminum Alloys. International Journal of Applied Engineering Research 13, no 11, 2018, 8889-8893
- 24. Samavedam S., Sakri S.B., Hanumantha D.R., Sundarrajan S.: Estimation of porosity and shrinkage in a cast eutectic Al-Si alloy. Canadian Metallurgical Quarterly 53, no.l, 2014, 55-64. doi:10.1179/18791 39513Y.0000000097
- 25. Santhi S., Sakri S.B., Hanumantha Rao D., Sundarrajan S.: Estimation of shrinkage porosity of a cast aluminium alloy. Journal o Mechanical Engineering 2, 2012,18-24
- 26. Cais J., Weiss V., Svobodova J.: Relation Between Porosity and Mechanical Properties of Al-Si Alloys Produced by Low-pressure Casting Archives of Foundry Engineering 14, 2014, 97-102
- 27. Piątkowski J.: Krystalizacja odlewniczych stopów aluminium. Archives of Foundry Engineering, Gliwice-Katowice, 2021
- 28. Dinnis C.M., Taylor J.A., Dahle A.K Porosity formation and eutectic growth in Al-S -Cu-Mg alloys containing iron and manganese. The 9th International Conference on Aluminum Alloys 2004. Edited by J.F. Morton and B.C. Muddle Queensland, Australia
- 29. Piątkowski J., Hejne M., Wieszata R.:Influence of manganese content on the microstructure and properties of AlSil0MnMg(Fe) alloy for die castings. Archives of Materials Science and Engineering 123, no 1, 2023, 5-12. D0l:10.5604/01.3001.0053.9750
- 30. Seifedine S., Svensson I.L The influence o£ Fe and Mn content and cooling rate on the microstructure and mechanical properties of A380-die casting alloys. Metallurgical Science and Technology, vol. 27-1, 2009, 11-20
- 31. Samuel A.M., Samuel F.H.: Effect of alloying elements and dendrite arm spacing on the microstructure and hardness of an Al-Scu-Mg-Fe-Mn (380) aluminum die-casting alloy . Journal of Materials Science, vol. 30,1995 1698-1708
- 32. Shabestari S.G.: The Effect on iron and manganese on the formation of intermetallic compounds in Al- Si alloys. Materials Science and Engineering A. 383, 2004, 289-298
- 33. Mahta M., Emamy M., Daman A. Keyvani A. Campbell J.: Precipitation of Fe-rich intermetallics in Cr and Co modified A413 alloy. International Journal of Cast Metals Research vol.18, no.2, 2005 73-79
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bdc98504-a0da-400b-a713-eb825f6fd1a7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.