Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The origin of geothermal energy is in the hot core of the Earth. Due its inexhaustible potential, it is also included among renewable sources. Renewable sources are, from the point of view of national economies, domestic resources that have the potential to replace and in the future, in certain applications, completely dispose of fossil fuels. These sources already offer the opportunity to significantly diversify energy sources in each country. Their development is also seen as an important tool to protect the national economy from future shocks from the rise in imported fuel prices and the cost of environmental damage [1]. Heat from the Earth's rock is obtained from deep boreholes of 100 m to 300 m. Systems for acquiring natural thermal energy from the ground are referred to as ground (wells) - water, i.e. that the rocks are the source of thermal energy that is pumped from the rocks through a circulating antifreeze mixture into a hermetically sealed collector. The heat pump produces a heat output of up to 65°C through the compressor, which is sufficient for the hot water heating system or for hot water heating [2]. Limestone and dolomite make up four fifths of all sediments on the Earth's surface. The transition between dolomite and limestone is not sharp, and thus is form a dolomitic limestone - a rock made of dolomite and a predominant limestone. Dolomite is a rock of sedimentary origin. It consists predominantly of a mineral of the same name. It is formed by settling of CaMg(CO3) in hypersalinic aqueous medium, but more often it results from dolomitization of settled limestones [3]. In Slovakia and especially in the Žilina region there is a large number of sites on dolomitic limestone, so it is necessary to know the properties of these rocks in what composition they occur in nature. The course of the temperature field in the rock mass can be determined by direct field measurements and analytical calculations. Mostly on-site measurement results provide input data for analytical calculation. On the other hand, the analytical calculation applies to the ideal body, and the information thus obtained provides a sort of temperature field course. By comparison, we can determine whether the temperature field in a rock mass based on the calculations is real or is loaded by errors (in measurements, in ignorance of structural - texture parameters, moisture and other aspects of material and mass) [4].
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
3--7
Opis fizyczny
Bibliogr. 8 poz., rys., wykr., wzory
Bibliografia
- [1] Petráš D. a kol.: Obnoviteľné zdroje energie pre nízkoteplotné systémy, JAGA group, s.r.o., Bratislava 2009, 246 s.
- [2] Petráš D. a kol.: Nízkoteplotné vykurovanie a obnoviteľné zdroje energie, JAGA group, s.r.o., Bratislava 2001, 271 s.
- [3] Kunz A. a kol.: Využití horninového prostředí jako stálého efektivního zdroje energie pro tepelná čerpadla. In Sborník přednášek "Nové poznatky v oblasti vŕtania, ťažby, dopravy a uskladňovania uhľovodíkov, Podbánské 2002, pp. 69-75.
- [4] Ryška J., Bujok P.: Možnosti využití horninového prostředí prozískávání nízkopotenciálního tepla - zkušenosti OKD, DPB a.s. In Sborník referátů conference "Současnost a perspektiv a těžby a úpravy nerudních surovin", VŠB - TU Ostrava 2002, pp. 239-240.
- [5] Wang H. et al.: Improved method and Case Study of Thermal Response test for Borehole Heat Exchangers of Ground Source Heat Pump System. In Renewable Energy, 2010, pp. 727-733.
- [6] Witee H.J.L. et al.: In Situ Measurement of Ground Thermal Conductivity: The Dutch Perspective. In ASHRAE Transaction 108, 2002, pp. 263-272.
- [7] Ražnievič K.: Termodynamické tabuľky, Alfa, Bratislava 1984, 336 s.
- [8] Ochaba Š.: Geofyzika, Slovenské pedagogické nakladateľstvo, Bratislava 1986, 368 s.
Uwagi
EN
1. This publication is the result of the project implementation: Device for the use of low-potential geothermal heat without forced circulation of the heat carier in deep boreholes, ITMS 26220220057 supported by the Operational Programme Research and development funded by the ERDF.
PL
2. Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bdc84c27-28a4-494c-8515-22da41dabfd0