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Abstract. The three spectra problem of recovering the Sturm-Liouville equation by the
spectrum of the Dirichlet-Dirichlet boundary value problem on [0, a], the Dirichlet-Dirichlet
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1. INTRODUCTION

In [15] the so-called three spectra inverse problem was introduced (see also [6], and
generalizations in [1–5,9,16,22]). There the spectrum of a boundary value problem
generated by the Sturm-Liouville equation on a finite interval is given together with
the spectra of the boundary value problems generated by the same equation on
complementary subintervals and the aim is to find the equation.

Let us describe a functional equation which appears in both the Hochstadt-
-Liebermann problem (see [7, 8, 13, 17, 19–21] for different versions of it) and in the
three spectra inverse problem.

It is more convenient to measure distance on the right half of the interval in the
opposite direction. Then we can write our problem as follows:

−y′′j + qj(x)yj = λ2yj , x ∈ [0, a/2] , j = 1, 2, (1.1)
y1(0) = 0, (1.2)
y2(0) = 0, (1.3)

y1 (a/2) = y2 (a/2) , (1.4)
y′1(a/2) + y′2(a/2) = 0. (1.5)
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Here qj ∈ L2(0, a/2) (j = 1, 2) are real valued. We denote the eigenvalues of problem
(1.1)–(1.5) by {λk}∞−∞, k 6=0 (λ−k = −λk). We introduce sj(λ, x), the solution of the
Sturm-Liouville equation (1.1) which satisfies the conditions sj(λ, 0) = 0, s′j(λ, 0) = 1.

Let us consider also the following problems on the subintervals:

−y′′j + qj(x)yj = λ2yj , x ∈ [0, a/2] , (1.6)
yj(0) = 0, (1.7)

yj (a/2) = 0, (1.8)

the spectra {ν(j)
k }∞−∞,k 6=0 (j = 1, 2) of which coincide with the sets of zeros of sj(λ, a/2)

and problem

−y′′j + qj(x)yj = λ2yj , x ∈ [0, a/2] , (1.9)
yj(0) = 0, (1.10)

y′j (a/2) = 0, (1.11)

the spectra {µ(j)
k }∞−∞,k 6=0 (j = 1, 2) of which coincide with the sets of zeros of s′j(λ, a/2).

Let us look for a solution to problem (1.1)–(1.5) in the form y1 = C1s1(λ, x),
y2 = C2s2(λ, x) where Cj are constants. Then (1.4) and (1.5) imply

C1s1 (λ, a/2) = C2s2(λ, a/2),

C1s
′
1 (λ, a/2) + C2s

′
2(λ, a/2) = 0.

This system of equations possesses a nontrivial solution at the zeros of the characteristic
function

Φ(λ) = s1(λ, a/2)s′2(λ, a/2) + s2(λ, a/2)s′1(λ, a/2). (1.12)

The set of zeros {λk}∞−∞,k 6=0 of this function is the spectrum of problem (1.1)–(1.5).
Let us notice that equation (1.12) is a particular case of the second of equations

(2.18) in Theorem 2.1 of [11] which appears in the spectra theory of quantum graphs.
Equation (1.12) plays an important role in the theory of the three spectra problem

and in the theory of the Hochstadt-Liebermann problem. Since knowing q1(x) we can
solve equation (1.1) with j = 1 and find s1(λ, a/2) and s′1(λ, a/2), knowing {λk}∞−∞,k 6=0
we can find Φ(λ), the Hochstadt-Liebermann problem can be formulated as follows:
given Φ(λ), s1(λ, a/2) and s′1(λ, a/2) find q2(x).

The three spectra problem of [15] can be formulated as follows: given Φ(λ), s1(λ, a/2)
and s2(λ, a/2) find q1(x) and q2(x). In the same way as in [15] one can solve the
following problem: given Φ(λ), s′1(λ, a/2) and s′2(λ, a/2) find q1(x) and q2(x).

In the present paper we introduce the notion of the Nevanlinna function of higher
order and essentially positive Nevanlinna functions of higher order (Section 2) which
we use in Section 3 to describe boundary value problems with conditions at two or
more interior points of the interval. There we compare the spectrum of the Dirichlet
problem on the whole interval with the union of the spectra of the Dirichlet problems
on the complementary subintervals.
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In Section 4 we deal with a direct three spectra problem. We show that

Φ(
√
z)

s′1(
√
z, a/2)s′2(

√
z, a/2) and s1(

√
z, a/2)s2(

√
z, a/2)

Φ(
√
z)

belong to the class of essentially positive Nevanlinna functions (see Definition 2.3
below), while

s1(
√
z, a/2)s′2(

√
z, a/2)

Φ(
√
z)

belongs to the class of essentially positive Nevanlinna functions of the second order
(see Definition 2.6 below). A consequence of these facts appears in certain mutual
order in the location of zeros of Φ(λ) and zeros of the product s1(λ, a/2)s′2(λ, a/2).

In Section 5 we consider the following inverse problem. Given the spectra of problem
(1.1)–(1.5), of problem (1.6)–(1.8) with j = 1 and of problem (1.9)–(1.11) with j = 2,
in other words given Φ(λ), s1(λ, a/2) and s′2(λ, a/2), find q1(x) and q2(x). We give
sufficient conditions of solvability and uniqueness of solutions to such a problem.

2. NEVANLINNA FUNCTIONS

In the sequel we will use the notion of the Nevanlinna function, also called the
R-function in [10]. In this paper we deal only with meromorphic functions.
Definition 2.1 (see e.g. [14, Definition 5.1.20]). The meromorphic function θ is said
to be a Nevanlinna function, or an R-function, or an N -function if:
(i) θ is analytic in the half-planes Imλ > 0 and Imλ < 0;
(ii) θ(λ) = θ(λ) if Imλ 6= 0;
(iii) Imλ Imθ(λ) > 0 for Imλ 6= 0.
Lemma 2.2 (see e.g. [14, Lemma 5.1,22]). If θ is a Nevanlinna function, then so are
the functions − 1

θ and ( 1
θ + c)−1 for any real constant c.

Proof. This easily follows from

Im
(
− 1
θ(λ)

)
= Imθ(λ)
|θ(λ)|2 and Im

(
1

θ(λ) + c
)−1

=
−Im 1

θ(λ)∣∣∣ 1
θ(λ) + c

∣∣∣
2 .

Definition 2.3 (see e.g. [18] or [14, Definition 5.1.26]).
1. The class N ep of essentially positive Nevanlinna functions is the set of all functions
θ ∈ N which are analytic in C \ [0,∞) with the possible exception of finitely many
poles.
2. The class N ep

+ (N ep
− ) is the set of all functions θ ∈ N ep such that for some γ ∈ R

we have θ(λ) > 0 (θ(λ) < 0) for all λ ∈ (−∞, γ).
Lemma 2.4 (see e.g. [18]). Let θ ∈ N ep

+ . Then the zeros {ak}∞k=1 and poles {bk}∞k=1
of θ interlace, i.e.

−∞ < b1 < a1 < b2 < a2 < . . . .
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Lemma 2.5 (see [18] or [14, Theorem 11.1.6]).

θ ∈ N ep
± if and only if − 1

θ
∈ N ep

∓ .

Proof. Since poles and zeros of θ ∈ N ep
+ interlace by Lemma 2.4, there is γ ≤ 0 such

that θ has no poles or zeros in (−∞, γ) and we have that θ(λ) > 0 for all λ ∈ (−∞, γ).
This means that − 1

θ also has no poles and zeros in (−∞, γ) and − 1
θ(λ) < 0 for all

λ ∈ (−∞, γ)

Definition 2.6. A function f(z)
g(z) is said to belong to N ep

+,p (essentially positive Nevan-
linna class of order p) if there exist functions g1(z), g2(z),. . . , gp(z) such that

f(z)
g1(z) ∈ N

ep
+ ,

g1(z)
g2(z) ∈ N

ep
+ , . . . ,

gp−1(z)
gp(z)

∈ N ep
+ ,

gp(z)
g(z) ∈ N

ep
+ .

Here N ep
+,0 =: N ep

+ .
It is clear that N ep

+,r ⊂ N ep
+,p for p > r.

Theorem 2.7. Let f(z)
g(z) ∈ N

ep
+,p. Then zeros {ak}mk=1 (m ≤ ∞) of f(z) and zeros

{bk}m1
k=1 (m1 ≤ ∞) of g(z) satisfy the conditions:

1. the interval (−∞, b1] does not contain elements of {ak}(∞)
k=1,

2. for k ≥ 2 each interval (−∞, bk) contains not more than k − 1 and not less than
k − 1− p elements of {ak}(∞)

k=1.

Proof. Denote by {τ (j)
k }∞k=1 (j = 1, 2, . . . , p) the sequence of zeros of gj(z). Statement 1

is obvious due to

−∞ < b1 < τ
(1)
1 < τ

(2)
1 < <̇τ

(p)
1 < a1 < a2 < . . . .

The interval (−∞, bk) containes exactly k − 1 elements of {τ (1)
k }∞k=1. The interval

(τ (1)
k−1, τ

(1)
k ) containes exactly one element of {τ (2)

k }∞k=1, namely τ
(2)
k−1 which can lie

either inside (τ (1)
k−1, bk) or outside of it. Thus, the number of elements of {τ (2)

k }∞k=1
belonging to (−∞, bk) is either k − 1 or k − 2. Thus, our theorem is proved for p = 1.
In the case of p > 1 we consider the following cases:

1. τ (2)
k−1 ∈ (τ (1)

k−1, bk). If τ (3)
k−1 < bk, then since τ (3)

k > τ
(2)
k > τ

(1)
k > bk we conclude that

the interval (−∞, bk) contains k − 1 element of {τ3)
k }∞k=1. If τ

(3)
k−1 > bk, then since

τ
(3)
k−2 < τ

(2)
k−1 < bk we conclude that (−∞, bk) contains k − 2 element of {τ3)

k }∞k=1.
2. τ (2)

k−1 ∈ [bk, τ (1)
k ). If τ (3)

k−2 ∈ [bk, τ (2)
k−1), then since τ (3)

k−3 < τ
(2)
k−2 < τ

(1)
k−1 < bk we

conclude that (−∞, bk) contains k − 3 element of {τ (3)
k }∞k=1. If τ

(3)
k−2 < bk, then

since τ (3)
k−1 > τ

(2)
k−1 > bk and (−∞, bk) contains k − 2 element of {τ (3)

k }∞k=1.
Thus, our theorem is true for p = 2. The case of any p > 2 can be treated in the

same way.
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Theorem 2.8. Let h(z)
f(z) ∈ N

ep
+ and h(z)

g(z) ∈ N
ep
+ . Then zeros {ak}mk=1 (m ≤ ∞) of

f(z) and zeros {bk}m1
k=1 (m1 ≤ ∞) of g(z) satisfy the condition: each interval (−∞, bk)

contains k − 1 or k elements of {ak}(∞)
k=1.

Proof. Denote by {dk}∞k=1 the zeros of h(z). Then

ak−1 < dk−1 < bk < dk < ak+1
and

dk−1 < ak < dk.

If ak ∈ (dk−1, bk), then (−∞, bk) contains k elements of {ak}(∞)
k=1. If ak ∈ [bk, dk), then

(−∞, bk) contains k − 1 elements of {ak}(∞)
k=1.

3. SPECTRAL PROBLEM OF VIBRATIONS
OF A SMOOTH STRING CLAMPED
AT MORE THAN ONE INTERIOR POINT

We obtain an example where functions of N ep
+,p can be used considering the problem

of vibrations of a smooth string clamped at a few interior points. Let 0 = a0 < a1 <
a2 < . . . < an = a and consider the Dirichlet problems

{
−y′′ + q(x)y = λ2y,

y(a0) = y(an) = 0,
(3.1)

{
−y′′ + q(x)y = λ2y,

y(aj−1) = y(aj) = 0,
where j = 1, 2, . . . , n, (3.2)

generated by the same real q ∈ L2(0, a). Denote by sj(λ, x) the solution of the
differential equation in (3.2) which satisfies sj(λ, aj−1) = s′j(λ, aj−1) − 1 = 0 (j =
1, 2, . . . , n+ 1). Then sj(λ, aj − aj−1) (j = 1, 2, . . . , n) are the characteristic functions
of problems (3.2). The case of n = 2 was considered in [15].
Theorem 3.1. For n ≥ 2,

n∏
j=1

sj(
√
z, aj − aj−1)

s1(
√
z, a) ∈ N ep

+,n−2.

Proof. Let us consider the boundary value problems
{
−y′′ + q(x)y = λ2y,

y(aj) = y(an) = 0.
(3.3)

The characteristic function of problem (3.1) is s1(
√
z, a), the characteristic function of

problems (3.2) are sj(
√
z, aj − aj−1) (j = 1, 2, . . . , n), the characteristic function

of problem (3.3) is sj+1(
√
z, a). Evidently,

s1(
√
z, a1)s2(

√
z, a)

s1(
√
z, a) ∈ N ep

+ ,
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s1(
√
z, a1)s2(

√
z, a2 − a1)s3(

√
z, a)

s1(
√
z, a1)s2(

√
z, a) = s2(

√
z, a2 − a1)s3(

√
z, a)

s2(
√
z, a) ∈N ep

+ ,

s1(
√
z, a1)s2(

√
z, a2 − a1)s3(

√
z, a3 − a2)s4(

√
z, a)

s1(
√
z, a1)s2(

√
z, a2 − a1)s3(

√
z, a) = s3(

√
z, a3 − a2)s4(

√
z, a)

s3(
√
z, a) ∈N ep

+ .

Theorems 2.7 and 3.1 imply the following corollary.

Corollary 3.2. Let n ≥ 2. The spectrum {λk}∞−∞,k 6=0 of problem (3.1) is related with
the union {ηk}∞−∞,k 6=0 =

⋃n
j=1{ν

(j)
k }∞−∞,k 6=0 of the spectra of problems (3.2) in the

sence that each interval (−∞, λ2
k) contains not more than k − 1 and not less than

k + 1− n elements of {η2
k}∞k=1.

Lemma 3.3. If any two of the three equalities s1(λ, a) = 0 , s1(λ, aj) = 0, sj(λ, a) = 0
are true, then the third of them is true also.

Proof. This follows from the identity

s1(λ, a) = s1(λ, aj)s′n+1(λ, aj) + s′1(λ, aj)sn+1(λ, aj)

which is an analogue of (1.12) because the sets of zeros of sn+1(λ, aj) and of sj(λ, a)
coincide

Corollary 3.4. Let n > 2 and k > n−1. Then if λk = ηk−n+1 = ηk−n+2 = . . . = ηk−1
then λk = ηk.

Proof. Condition λk = ηk−n+1 = ηk−n+2 = . . . = ηk−1 means that among
sj(λk, aj − aj−1) (j = 1, 2, . . . , n) at least n − 1 are equal to zero. Suppose
sp(λk, ap − ap−1) 6= 0. Then, by Lemma 3.3, s1(λk, a) = 0 and s1(λk, ap−1) = 0 imply
sp(λk, a) = 0. Now sp(λk, a) = 0 and sp+1(λk, a) = 0 imply sp(λk, ap − ap−1) = 0,
a contradiction.

4. DIRECT THREE SPECTRA PROBLEM

Here we compare the spectrum of problem (1.1)–(1.5) with the union of the spectrum
of problem (1.6)–(1.8) with j = 1 and the spectrum of problem (1.9)–(1.11) with
j = 2.

We will use the following simple result.

Lemma 4.1. Let Φ be given by (1.12). Then the function

s2(
√
z, a/2)s1(

√
z, a/2)

Φ(
√
z)

is an essentially positive Nevanlinna function.
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Proof. It is known that s1(
√
z,a/2)

s′
1(
√
z,a/2) and s2(

√
z,a/2)

s′
2(
√
z,a/2) are essentially positive Nevanlinna

functions. Therefore, such is also

s2(
√
z, a/2)s1(

√
z, a/2)

Φ(
√
z) =

((
s1(
√
z, a/2)

s′1(
√
z, a/2)

)−1
+
(
s2(
√
z, a/2)

s′2(
√
z, a/2)

)−1)−1

by arguments similar to the proof of Lemma 2.2

Theorem 4.2. The sequences {λk}∞−∞,k 6=0 and {ζk}∞−∞,k 6=0
def= {ν(1)

k }∞−∞,k 6=0 ∪
{µ(2)

k }∞−∞,k 6=0 are interlaced as follows: each interval (−∞, (λk)2) contains k or k − 1
elements of the sequence {(ζk)2}∞k=1.

Proof. This follows from

s1(
√
z, a/2)s2(

√
z, a/2)

Φ(
√
z) ∈ N ep

+ ,
s1(
√
z, a/2)s2(

√
z, a/2)

s1(
√
z, a/2)s′2(

√
z, a/2) ∈ N

ep
+

and Theorem 2.8.

In the next section we will use the following known result.

Lemma 4.3 (see, e.g. [12, Theorem 3.4.1] with a = π or [14, Corollaries 12.2.10
and 12.5.2]). If qj ∈ L2(0, a/2), then the sequences {λk}∞−∞,k 6=0, {µ

(j)
k }∞−∞,k 6=0,

{ν(j)
k }∞−∞,k 6=0, which are the sets of zeros of the functions

s(λ, a) = sinλa
λ
− A0 cosλa

λ2 + ψ(λ)
λ2 ,

where A0 = A1 +A2, Aj = 1
2
∫ a/2

0 qj(x)dx, ψ ∈ La,

s′j(λ, a/2) = cos λa2 +Aj
sin λa

2
λ

+ ψ̃j(λ)
λ

,

sj(λ, a/2) =
sin λa

2
λ
−Aj

cos λa2
λ2 + ψj(λ)

λ2

with ψj ∈ La/2, ψ̃j ∈ La/2, behave asymptotically as follows:

λk = πk

a
+ A0
πk

+ βk
k
, (4.1)

µ
(j)
k = π(2k − 1)

a
+ Aj
πk

+ β̃
(j)
k

k
, (4.2)

ν
(j)
k = 2πk

a
+ Aj
πk

+ β
(j)
k

k
, (4.3)

where {βk}∞−∞,k 6=0 ∈ l2, {β
(j)
k }∞−∞,k 6=0 ∈ l2, {β̃

(j)
k }∞−∞,k 6=0 ∈ l2 (j = 1, 2).
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5. THREE SPECTRA INVERSE PROBLEM

Now we consider a three spectra inverse problem in which the spectrum of problem
(1.1)–(1.5) is given together with f the spectrum of problem (1.6)–(1.8) with j = 1 and
the spectrum of problem (1.9)–(1.11) with j = 2. The aim is to recover qj (j = 1, 2).
In other words, in this case the sets of zeros of Φ(λ), s1(λ, a/2) and s′2(λ, a/2) are
given.

Definition 5.1. An entire function of exponential type ≤ a is said to belong to the
Paley-Wiener class La if its restriction onto the real axis belongs to L2(−∞,∞).

Lemma 5.2. The set of zeros of the function

Φ(λ) = cos λa2
sin λa

2
λ
−A2

cos2 λa
2

λ2 +A1
sin2 λa

2
λ2 + ψ(λ)

λ2 , (5.1)

where Aj are real constants, ψ ∈ La can be given as the union of two sets (denote
them by {ζ(2)

k }∞−∞,k 6=0 and {ζ(1)
k }∞−∞,k 6=0) such that ζ(j)

−k = −ζ(j)
k (j = 1, 2) and

ζ
(2)
k = 2πk

a
+ A2
πk

+ γk
k
, (5.2)

ζ
(1)
k = π(2k − 1)

a
+ A1
πk

+ γ̃k
k
,

where {γk}∞−∞,k 6=0 ∈ l2, {γ̃k}∞−∞,k 6=0 ∈ l2.
Proof. The function Φ(λ) can be presented as follows:

Φ(λ) = Φ0(λ) + ψ1(λ)
λ2 ,

where

Φ0(λ) = cos λa2
sin λa

2
λ
−A2

cos2 λa
2

λ2 +A1
sin2 λa

2
λ2 −A1A2 cos λa2

sin λa
2

λ3

=
(

sin λa
2

λ
−A2

cos λa2
λ2

)(
cos λa2 +A1

sin λa
2

λ

)

and Ψ1 ∈ La.
Let us consider circles Ck(ρ) of radii ρk centered at 2πk

a + A2
πk . If χ ∈ [0, 2π), then

sin
(
πk + aA2

2πk + aρ

2k e
iχ

)
= (−1)k−1

(
aA2
2πk + ρa

2k e
iχ

)
+O

(
1
k3

)
,

cos
(
πk + aA2

2πk + aρ

2k e
iχ

)
= (−1)k−1 +O

(
1
k2

)
,

Φ0

(
2πk
a

+ A2
πk

+ ρ

k
eiχ
)

= ρa2

2πk2 e
iχ +O

(
1
k3

)
.
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Therefore, for any ε ∈ (0, ρa2) and any χ ∈ [0, 2π) there exists kε ∈ N such that for
k > kε ∣∣∣∣Φ0

(
2πk
a

+ A2
πk

+ ρ

k
eiχ
)∣∣∣∣ >

ρa2 − ε
2πk2 .

By Lemma 1.4.3 of [12] or Lemma 12.2.1 of [14],

ψ1

(
2πk
a

+ A2
πk

+ ρ

k
eiχ
)
→
k→∞

0

uniformly with respect to χ ∈ [0, 2π). Thus, we conclude that for k large enough
∣∣∣∣∣

(
2πk
a

+ A2
πk

+ ρ

k
eiχ
)−2

ψ1

(
2πk
a

+ A2
πk

+ ρ

k
eiχ
)∣∣∣∣∣

<
ρa2 − ε
2πk2 <

∣∣∣∣Φ0

(
2πk
a

+ A2
πk

+ ρ

k
eiχ
)∣∣∣∣ .

It is clear that the set of zeros of Φ0 consists of two subsequences and one of these
subsequences due to its asymptotics has exactly one element in each circle Ck(ρ) for
k > kε. Hence by Rouche’s theorem we conclude that for k large enough each such
circle contains exactly one zero of Φ(λ). Since ρ can be chosen arbitrary small we
conclude that there is a subsequence of zeros of Φ(λ) of the form

ζ
(2)
k = 2πk

a
+ A2
πk

+ ∆k

k
, (5.3)

where ∆k = o(1). Substituting (5.3) into Φ(ζ(2)
k ) = 0 and using (5.1) we obtain (5.2).

In the same way we obtain the asymptotics for {ζ(1)
k }∞−∞,k 6=0.

Theorem 5.3. Let three sequences {ν(1)
k }∞−∞,k 6=0 (ν(1)

−k = −ν(1)
k ), {µ(2)

k }∞−∞,k 6=0

(µ(2)
−k = −µ(2)

k ) and {λk}∞−∞,k 6=0 (λ−k = −λk) satisfy the following conditions:

1. {ν(1)
k }∞−∞,k 6=0 satisfy (4.3) with j = 1, {µ(2)

k }∞−∞,k 6=0 satisfy (4.2) with j = 2 and
{λk}∞−∞,k 6=0 satisfy (4.1), where A0 = A1 +A2,

2.
−∞ < (λ1)2 < (ζ1)2 = (µ(2)

1 )2 < (λ2)2 < (ζ2)2 < . . . ,

where
{ζk}∞−∞,k 6=0 := {ν(1)

k }∞−∞,k 6=0 ∪ {µ(2)
k }∞−∞,k 6=0.

Then there exists a unique pair of real valued functions qj(x) ∈ L2(0, a/2) (j = 1, 2)
which generate problem (1.6)–(1.8) with j = 1 and the spectrum {ν(1)

k }∞−∞,k 6=0, problem
(1.9)–(1.11) with j = 2 and the spectrum {µ(2)

k }∞−∞,k 6=0 and problem (1.1)–(1.5) with
the spectrum {λk}∞−∞,k 6=0.
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Proof. Let us construct

P (λ) := a

∞∏

k=1

( a

πk

)2
(λ2
k − λ2),

φ̃1(λ) := a

2

∞∏

k=1

( a

2πk

)2
((ν(1)

k )2 − λ2),

φ2(λ) :=
∞∏

k=1

(
a

π(2k − 1)

)2
((µ(2)

k )2 − λ2),

We consider the function

Φ(λ) := P (λ)− φ̃1(λ)φ2(λ). (5.4)

Since (see, e.g. [12, Lemma 3.4.2], [14, Lemma 12.3.3])

P (λ) = sinλa
λ
− A0 cosλa

λ2 + τ(λ)
λ2 ,

where τ belongs to La, and

φ2(λ) = cos λa2 +A2
sin λa

2
λ

+ τ2(λ)
λ

,

φ̃1(λ) =
sin λa

2
λ
−A1

cos λa2
λ2 + τ̃1(λ)

λ2

with τ2 ∈ La/2, τ̃1 ∈ La/2, we conclude that Φ(λ) given by (5.4) can be represented
as in (5.1). Therefore, Φ satisfies the conditions of Lemma 5.2 and the set of zeros of
Φ(λ) consists of two subsequences which we denote by {ν(2)

k }∞−∞,k 6=0 and {µ(1)
k }∞−∞,k 6=0

which behave asymptotically as follows:

ν
(2)
k = 2πk

a
+ A2
πk

+ γk
k
,

µ
(1)
k = π(2k − 1)

a
+ A1
πk

+ γ̃k
k
,

where {γk}∞−∞,k 6=0 ∈ l2 and {γ̃k}∞−∞,k 6=0 ∈ l2.
Let us notice that Φ(λ) > 0 for λ2 → −∞. Since Φ(λk) = −φ̃1(λk)φ2(λk),

condition 2 implies
Φ(λk)(−1)k > 0.

Since Φ(ζk) = P (ζk), condition 2 implies

Φ(ζk)(−1)k = P (ζk)(−1)k > 0.

Taking into account the asymptotics (above) we conclude that each interval (−∞, λ2
1),

(ζ2
1 , λ

2
2), (ζ2

2 , λ
2
3),. . . , contains exactly one zero of Φ(

√
z). Now we denote the zero of
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Φ(
√
z) lying in (−∞, λ2

1) by (µ(2)
1 )2. We denote the zero of Φ(

√
z) lying in (ζ2

k , λ
2
k+1)

by (ν(2)
r )2 if ζk = µ

(2)
r and by (µ(1)

r+1)2 if ζk = ν
(1)
r . Therefore, {(ν(2)

k )2}∞k=1 interlace
with {(µ(2)

k )2}∞k=1:

−∞ < (µ(2)
1 )2 < (ν(2)

1 )2 < (µ(2)
2 )2 < (ν(2)

2 )2 < . . .

Thus the sets {ν(2)
k }∞−∞,k 6=0 and {µ(2)

k }∞−∞,k 6=0 satisfy the conditions of Theorem
3.4.1 in [12] with a = π (see also Theorem 12.6.2 in [14]) and there exists a unique
real-valued function q2(x) ∈ L2(0, a2 ) which generates the Dirichlet-Dirichlet and the
Dirichlet-Neumann problems on [0, a2 ] with the spectra {ν(2)

k }∞−∞,k 6=0 and {µ(2)
k }∞−∞,k 6=0,

respectively.
We can find q2(x) via procedure ([12, Theorem 3.4.1, p. 248] or [13, Theorem 12.6.2])

described below. Without loss of generality let us assume that µ2
1 > 0, otherwise we

apply a shift. Using the functions φ2(λ) and

φ̃2(λ) := a

2

∞∏

k=1

( a

2πk

)2
((ν(2)

k )2 − λ2),

we construct
e(λ) = (φ2(λ) + iλφ̃2(λ))e−iλ a

2

which is the so-called Jost-function of the corresponding prolonged Sturm-Liouville
problem on the semi-axis:

−y′′ + q(x)y = λ2y, x ∈ [0,∞),

y(0) = 0

with

q(x) =
{
lq2(x) for x ∈ [0, a/2],
0 for x ∈ (a/2,∞).

Then we construct the S-function of the problem on the semi-axis:

S(λ) = e(λ)
e(−λ)

and the function

F (x) = 1
2π

∞∫

−∞

(1− S(λ))eiλxdx,

Solving the Marchenko equation

K2(x, t) + F (x+ t) +
∞∫

x

K2(x, s)F (s+ t)dp = 0
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we find K2(x, t) and the potential

q2(x) = 2dK2(x, x)
dx

,

which is a real-valued function and belongs to L2(0, a/2). This potential generates the
Dirichlet-Neumann problem with the characteristic function s′2(λ, a/2) ≡ φ2(λ) and
the spectrum {µ(2)

k }∞−∞,k 6=0 and Dirichlet-Dirichlet problem with the characteristic
function s2(λ, a/2) ≡ φ̃2(λ).

In the same way we construct q1(x) using the sequences {µ(1)
k }∞−∞,k 6=0 and

{ν(1)
k }∞−∞,k 6=0. It is clear that the obtained q1(x) generates the Dirichlet-Neumann

problem with the characteristic function

s′1(λ, a/2) ≡ φ1(λ) =:
∞∏

k=1

(
a

π(2k − 1)

)2
((µ(1)

k )2 − λ2),

and the Dirichlet-Dirichlet problem with the characteristic function s1(λ, a/2) ≡ φ̃1(λ).
Now if we solve problem (1.1)–(1.5) with obtained q1 and q2, we find the charac-

teristic function

φ(λ) =: s′1(λ, a/2)s2(λ, a/2)+s′2(λ, a/2)s1(λ, a/2) = φ1(λ)φ̃2(λ)+φ2(λ)φ̃1(λ) = P (λ)

with the set of zeros {λk}∞−∞,k 6=0.
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