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Abstract: This article describes functional and diagnostic structure of the equipment of a Wind 
Power Station. Considering particular operational conditions of a technical object, that is a set of 
Wind Power Station equipment, this is a significant issue. A structural model of Wind Power 
Station equipment is developed. Based on that, a functional – diagnostic model of Wind Power 
Station equipment is elaborated. That model is a basis for determining primary elements of the 
object structure, as well as for interpreting a set of diagnostic signals and their reference signals. 
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1. INTRODUCTION 

Expert systems are programs that can help or 
replace human experts in a specific field. Such 
systems can provide pieces of advice, 
recommendations or diagnoses relating to problems 
appearing in a specific field [1, 2, 7-13, 16, 28]. 
Computer programs developed in that way are of great 
importance and use for fields that are poorly 
formalized (without having mathematical 
backgrounds, which could be created algorithms for) 
e.g. diagnostics, medicine, etc [4, 6, 22-23, 26-27]. 
Expert systems are characterized not only by their 
capability to solve non-algorithmically defined 
problems but also have other advantages e.g. collected 
expert knowledge can be easily transmitted and 
available if experts are not present at time (due to their 
sick health or retirement) and coded knowledge can be 
easily delivered (it is easier to copy a computer 
program than teach another human) and a response 
can be acquired fast, and there are no human 
symptoms like fatigue nor stress [8-13].  

A problem of creating effective knowledge bases 
for expert systems to be used in a diagnostic process 
of safe usage of Wind Power Plant’s equipment is 
considerably complex. One may say that this problem 
is of interdisciplinary character since it relates to e.g. 
IT (expert systems, knowledge bases), math (gathering 
and analyzing knowledge sets), diagnostic (creating 
models for technical models and organizing signals’ 
measurements), reliability – operational (examining 
technical conditions of objects), artificial intelligence 
(processing and transferring human expertise into 
artificial knowledge using a computer programming 
languages) [2, 7, 10-13]. 

The article covers issues such as: 
− making models for technical objects, including 

functional-diagnostic models, 
− examining technical objects, including evaluation 

of technical condition, and creation of diagnostic 
signal sets, 

− measuring diagnostic signals, including analysis of 
measurement results and creation of reference 
diagnostic signal sets, 
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− expert knowledge relating to gathering, analyzing, 
and concluding in an expert system, 

− math problems, including creation of knowledge 
sets, analysis, and conclusions (making decisions). 
The above-mentioned issues are not presented in 

literature clearly and comprehensively. Hence the 
diversity of the subject matter of publications used in 
the article. The authors of this article presented their 
approach to the development (solution) of such 
a complex problem. Such a full approach to the 
problem of presenting the issue of building an expert 
knowledge base for the purposes of diagnosing the 
state of safe use of wind farm equipment is an 
innovative solution [1, 7, 17, 20, 24-25]. 

This work presents the issues of building 
a diagnostic knowledge base for wind farm equipment. 
The development of a diagnostic knowledge base is 
the basis for building a set of facts and rules for the 
future expert knowledge base being built. 

2. FUNCTIONAL AND DIAGNOSTIC 
STRUCTURE OF THE EQUIPMENT OF 

A WIND POWER STATION 

The basis of the technical diagnostics of technical 
devices and items {O(ei,j)} is the performance of 
a diagnostic test of the item examined. The diagnostic 
test of the item consists in a number of technical and 
technological activities as well as mental activities. 
The effect of these activities is the structure of the 
technical item in the form of its functional and 
diagnostic diagram based on which the set of the 
diagnostic signals {Xi,j} is determined. The functional 
units of the item (units) in the functional and 
diagnostic diagram presented in Fig. 1 are 
“addressed”: numbered in the following manner: (Ei) 
is the i-th number of the functional unit in the item [3-6]. 

The elements of the unit are “addressed” in the 
form (ei,j), where j-th means the number of the 
element in the i-th unit. It is accepted that the j-th 
element or the basic module distinguished in the 
diagram of the structure of the item is such an element 
(module) of the item which is indivisible in its 
structure, and which develops its output signal. This 

signal is further known as the measuring signal or the 
diagnostic signal. When the element develops more 
than one output signal, it is only one generalized 
signal that needs to be determined which expresses 
best the functional (diagnostic, reliability etc.) 
properties of a given j-th element [3-6].  

The functional units are defined in the system as 
units and primary elements are defined as elements. 
Third level subunits perform the function of 
intermediate “elements” that enable the bidirectional 
transformation of the hierarchic form of the item into 
the matrix internal structure presented in (Tab. 1 and 
Figs. 2 and 3). 

 

Fig. 1. Functional diagnostic diagram of a wind turbine 
generator, where: E1 – generator drive system, E2 – 
synchronous generator system, E3 – generator's 
magnet system, E4 – power regulator system, E5 – 
electric power converter system, E6 – voltage and 
current coordinate converter system, E7 – MV 
transformer assembly 

Tab. 1. A set of diagnostic signals {X(ei, j)} determined in a wind farm model 

Object Units A set of diagnostic signals {X(ei, j)} determined in a wind farm model 

E1 e1,1 e1,2 e1,3 e1,4 e1,5 

E2 e2,1 e2,2 ∅ ∅ ∅ 

E3 e3,1 e3,2 e3,3 ∅ ∅ 

E4 e4,1 e4,2 ∅ ∅ ∅ 

E5 e5,1 e5,2 ∅ ∅ ∅ 

E6 e6,1 e6,2 ∅ ∅ ∅ 

E7 e7,1 e7,2 ∅ ∅ ∅ 
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Where: e1,1 – turbine shaft stabilization unit, e1,2 – 
main transmission, e1,3 – transmission temperature 
control system, e1,4 – clutch, e1,5 – generator brake, e2,1 
– synchronous generator, e2,2 – generator temperature 
control system, e3,1 – magnetic field winding, e3,2 – 
system excitation voltage regulation, e3,3 – matching 
system, e4,1 – PWM inverter assembly, e4,2 – generator 
power regulator, e5,1 – controlled rectifier, e5,2 – 
inverter, e6,1 – UA, UB, UC - three-phase voltage 
coordinate converter assembly, e6,2 – current 
coordinate converter unit IA, IB, IC ; e7,1 – MV 
transformer temperature control system, e7,2 – MV 
transformer unit. 

It is assumed that the j-th basic element or basic 
module highlighted in the structure of the object 
structure is the element-module of the object that is 
not divisible in its structure, and which produces its 
output signal. The signal generated is referred to as the 
measuring signal or diagnostic signal. If an element 
generates more than one output signal, then only one 
generalized signal should be determined, which most 
closely reflects the functional (diagnostic, reliability, 
etc.) properties of the given jth element. 

As a result of functional and diagnostic analysis, 
a set of measuring and reference diagnostic signals 
{X(ei, j)} was identified in the wind farm model, 
which are identified at the outputs of j-functional 
elements. The designated set of reference and 
measuring diagnostic signals {Xw(ei, j)} of a wind 
power plant is presented in Table 2. By analyzing 

values of measurement signals, a set of reference 
diagnostic signals {Xw(ei,j)} of wind turbine 
generators is designated and shown in Table 2. 

 

Fig. 2. Screen of (DIAG 2) programme - diagram of the 
functional and diagnostic structure of the wind 
power system, where: E1 – generator drive system, 
E2 – synchronous generator system, E3 – generator's 
magnet system, E4 – power regulator system, E5 – 
electric power converter system, E6 – voltage and 
current coordinate converter system, E7 – MV 
transformer assembly 

 

Fig. 3. Screen of consolidated diagnostic information in (DIAG 2) software, where: E1 – generator drive system, E2 – 
synchronous generator system, E3 – generator's magnet system, E4 – power regulator system, E5 – electric power 
converter system, E6 – voltage and current coordinate converter system, E7 – MV transformer assembly 
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Tab. 2. Set of measurement diagnostic signals and reference signals {Xw(ei,j)} for one wind turbine generator in a Wind 
Power Plant as an example 

Object Units Signals of Basic Object Components 

Symbol Description Symbol Description of example diagnostic signals 

E1 
Nacelle with 
drive train 

X(e1,1) Wind speed and direction measurement system - 18 reference value 18 

X(e1,2) Yaw system - 240 reference value 240 

X(e1,3) Drive train - 239 reference value 240 

X(e1,4) Rotor - 57 reference value 60 

X(e1,5) Pitch system – 12.5 reference value 13 

E2 
LSS 

 

X(e2,1) 
LSS stabilization system -  
0.0038 reference value 0.0035 

X(e2,2) LSS - 746 reference value 750 

X(e2,3) LSS grease system - 28 reference value 30 

E3 Gearbox 

X(e3,1) Gearbox temperature regulation system - 38 reference value 40 

X(e3,2) Gearbox - 1487 reference value 1500 

X(e3,3) Clutch - 1487 reference value 1500 

X(e3,4) Mechanical brake - 1487 reference value 1500 

E4 Generator 
X(e4,1) Generator temperature regulation system - 38 reference value 40 

X(e4,2) Generator- 690 reference value 690 

E5 
Magnetizer 

 

X(e5,1) Magnetizer- 3.35 reference value 3.40 

X(e5,2) 
Generator current regulation system 
- 1.38 reference value 1.40 

E6 Converter 
X(e6,1) Power regulator system- 1.67 reference value 1.80 

X(e6,2) Converter - 678 reference value 690 

E7 
MV 

Transformer 

X(e7,1) MV transformer – 1.75 reference value 1.80 

X(e7,2) Output block - power grid – 1.75 reference value 1.80 

 

3. CONCLUSIONS 

The expert system described above that supports 
diagnosing wind farm devices works out an 
assessment of the working condition of its individual 
elements based on input data and a knowledge base 
created. Obtaining a diagnosis and the realization of 
the inference process takes place in an intuitive 
manner through the subsequent occurrence of panels 
that form the so-called diagnosing path. Owing to the 
use of a graphical interface, there is a quick access to 
the working condition of all the elements of the wind 
farm within the framework of a consolidated (general) 
assessment. In a detailed assessment, each element of 
the farm presents the working conditions of all the 
sub-assemblies (blocks) and the reasons of the 
occurrence of an alarm or failure signal. The database 
that is based on real measurements (the real values of 
diagnostic signals) and an extended knowledge base 
allow one to obtain a reliable diagnosis of the 
functioning condition of the wind farm devices. 
Owing to this, the expert system described can be 
successfully used as a part of an intelligent supervision 
and safety system in the operation of the wind farm. 
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