PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

CropSyst model for wheat irrigation water management with fresh and poor quality water

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Model CropSyst do zarządzania nawadnianiem pszenicy wodą słabej jakości
Języki publikacji
EN
Abstrakty
EN
CropSyst model can be used as irrigation water management tool to increase wheat productivity with poor quality water. The objective of this study was to calibrate CropSyst model for wheat irrigated with fresh and agricultural drainage water. To do so, three field experiments were conducted during three successive seasons in Nubaria Agricultural Research Station, Egypt representing the newly reclaimed calcareous soils. In the first season the treatments were 100% crop evapotranspiration (ETc) of fresh water (FW) and 100% ETc of agricultural drainage water (DW), while in the second and the third seasons, the treatments were 100% ETc of FW, 100% ETc of DW, 120% ETc of DW and 130% ETc of DW. From these results one can concluded that deducting 5% of the applied water to all treatments reduced yield by 3, 5 and 7% in the first, second and third growing season, respectively as a result of heat stress existed in the 2nd and 3rd seasons during reproductive phase. Furthermore, deducting 5% of the applied water from all treatments in the vegetative phase only resulted in lower yield losses. Thus, using CropSyst model could guide us to when we could reduce the applied irrigation water to wheat to avoid high yield losses.
PL
Model CropSyst może znaleźć zastosowanie jako narzędzie w zarządzaniu systemem nawodnień wodą niskiej jakości w celu zwiększenia produkcji pszenicy. Przedmiotem przedstawionych badań było skalibrowanie modelu CropSyst do nawodnień pszenicy wodą naturalną i wodą z rolniczych systemów drenarskich. W tym celu przeprowadzono trzy eksperymenty polowe w trzech kolejnych sezonach realizowane w Nubaria Agricultural Research Station w Egipcie na ostatnio zmeliorowanych glebach wapiennych. W pierwszym sezonie warianty eksperymentalne obejmowały: 100% ewapotranspiracji (ETc) wody naturalnej (FW) i 100% ETc wody z systemów drenarskich (DW); w drugim i trzecim sezonie wariantami eksperymentalnymi były: 100% ETc z użyciem FW, 100% ETc z użyciem DW oraz 120% i 130% ETc z zastosowaniem DW. Uzyskane wyniki dają podstawy do wnioskowania, że zmniejszenie ilości wody zastosowanej do nawodnień o 5% we wszystkich wariantach zmniejszyło plony o 3, 5 i 7% odpowiednio w pierwszym, drugim i trzecim sezonie wskutek stresu termicznego, jaki wystąpił w drugim i trzecim sezonie w fazie reprodukcji. Ponadto, zmniejszenie ilości stosowanej wody o 5% jedynie w trakcie fazy wegetatywnej skutkowało mniejszymi stratami plonu. Podsumowując, zastosowanie modelu CropSyst umożliwia nam stwierdzenie, kiedy można ograniczyć ilość wody do nawodnień i uniknąć znaczących strat w plonie pszenicy.
Wydawca
Rocznik
Tom
Strony
41--50
Opis fizyczny
Bibliogr. 39 poz., rys., tab.
Twórcy
autor
  • Water Requirements and Field Irrigation Research Department, Soils, Water and Environment Research Institute, Agricultural Research Center; 9 El-Gamah Street, Giza, Egypt
autor
  • Water Requirements and Field Irrigation Research Department, Soils, Water and Environment Research Institute, Agricultural Research Center; 9 El-Gamah Street, Giza, Egypt
  • Irrigation Department, CEBAS-CSIC, Campus Universitario de Espinardo 30100 Espinardo, Apartado 164, Spain
  • Botany Department, National Research Centre, 33 El Behouth Street, Dokki, 12622, Giza, Egypt
Bibliografia
  • ABDRABBO M., OUDA S., NORELDIN T. 2013. Modeling the effect of irrigation scheduling on wheat under climate change conditions. Nature and Science Journal. Vol. 11. Iss. 5 p. 10–18.
  • ALLEN R.G., PEREIRA L.S., RAES D., SMITH M. 1998. Crop evapotranspiration: Guideline for computing crop water requirements. FAO No. 56. ISBN 92-5-104219-5.
  • AMER M.H., RIDDER N.A. 1988. Land drainage in Egypt. Drainage Research Institute, Water Research Center, Cairo pp. 376.
  • ASGRI H.R., CORNELIS W., VAN DAMME P. 2012. Salt stress effect on wheat (Triticum aestivum L.) growth and leaf ion concentrations. International Journal of Plant Production. Vol. 6 p. 195–208.
  • BAQUE M.D.A., KARIM M.D.A., HAMID A., TETSUSH H. 2006. Effects of fertilizer potassium on growth, yield and nutrient uptake of wheat (Triticum aestivum) under water stress conditions. South Pacific Studies. Vol. 27. Iss. 1 p. 25–35.
  • BENLI B., PALA M., STOCKLE C., OWEIS T. 2007. Assessment of winter wheat production under early sowing with supplemental irrigation in a cold highland environment using CropSyst simulation model. Agricultural Water Management. Vol. 93. Iss. 1–2 p. 45–54.
  • BUKHAT N.M. 2005. Studies in yield and yield associated traits of wheat (Triticum aestivum L.) genotypes under drought conditions. MScThesis. Department of Agronomy. Sindh Agriculture University, Tandojam, Pakistan.
  • CONFALONIERI R., BECHINI L. 2004. A preliminary evaluation of the simulation model CropSyst for Alfalfa. European Journal of Agronomy. Vol. 21. Iss. 2 p. 223–237.
  • DENCIC S., KASTORI R., KOBILJSKI B., DUGGAN B. 2000. Evaporation of’ grain yield and its components in wheat cultivars and land races under near optimal and drought conditions. Euphytica. Vol. 1 p. 43–52.
  • DUDLEY R.G., SHEIL D., COLFER C. 2008. Simulating oil palm expansion requires credible approaches that address real issues [online]. Ecology and Society 13 (1). [Access 23.09.2015]. Available at: http://www.ecologyandsociety.org/vol13/iss1/resp1/
  • EL-HENDAWY S.E., HUA Y., YAKOUT G.M., AWAD A.M., HAFIZ S.E., SCHMIDHALTER U. 2005. Evaluating salt tolerance of wheat genotypes using multiple parameters. European Journal of Agronomy. Vol. 22. Iss. 3 p. 243–253.
  • EL-KHOLY M.A., OUDA S.A., GABALLAH M.S., HOZAYN M. 2005. Predicting the interaction between the effect of anti-transpirant and weather on productivity of wheat plant grown under water stress. Journal of Agronomy. Vol. 4. Iss. 1 p. 75–82.
  • FLOWERS T.J. 2004. Improving crop salt tolerance. Journal of Experimental botany. Vol. 55 p. 307–319.
  • GHAVAMI F., MALBOOBI M.A., GHANNADHA M.R., SAMADI B.Y., MOZAFFARI J., AGHAEI M. 2004. An evaluation of salt tolerance in Iranian wheat cultivars at germination and seedling stages. Iranian Journal of Agricultural Sciences. Vol. 35 p. 453–464.
  • GUPTA R., GULATI R.K., SINGH H.P. 2001. An Investigation of Convective Overshoot from the Spectra of G and K Dwarfs. In: 11th Cambridge Workshop, Cool Star, Stellar Systems, and the Su-Challenges for the New Millennium [CD-ROM]. Ed. R.J. Garcia-Lopez, R. Rebelo, M. R. Zapatero Osorio. ASP Conf. Ser. Vol. 223. CD-791.
  • GUTTIERI M.J., STARK J.C., BRIEN K.O., SOUZA E. 2001. Relative sensitivity of spring wheat grain yield and quality parameters to moisture deficit. Crop Science. Vol. 41. Iss. 2 p. 327–335.
  • JAMIESON P.D., PORTER J.R., GOUDRIAAN J., RITCHIE J.T., VAN KEULEN H., STOL W. 1998. A comparison of the models AFRCWHEAT2, CERES-Wheat, Sirius, SUCROS2 and SWHEAT with measurements from wheat grown under drought. Field Crops Research. Vol. 55. Iss. 1–2 p. 23–44.
  • KHALIL F.A., FARAG H., EL AFANDI G., OUDA S.A. 2009. Vulnerability and adaptation of wheat to climate change in Middle Egypt. 13th International Conference on Water Technology. Hurghada, Egypt. 12–15 March.
  • MAAS E.V., GRATTAN S.R. 1999. Crop yields as affected by salinity. In: Agricultural drainage. Eds R.W. Kaggs, J. van Schilfgaarde. Agronomy Monograph. No. 38. Madison, WI. ASA, CSSA, SSA p. 55–108.
  • MASHLI A.M. 1985. Amelioration and development of deteriorated soils – Egypt. Technical Report, Project FAO/UNDP EGY/79/020. Cairo, Egypt.
  • MATTHEWS R.B., STEPHENS W., HESS T., MASON T., GRAVES A.R. 2000. Applications of crop/soil simulation models in developing countries. Final Report. PD 82. Cranfield Univ. at Silsoe, UK.
  • MCMASTER G.S. 1997. Phonology, development, and growth of wheat (Triticum aestivum L.) shoot apex: A review. Advances in Agronomy. Vol. 59 p. 63–118.
  • NORELDIN T., OUDA S., ABOU ELENEIN R. 2013. Development of management practices to address wheat vulnerably to climate change in north Delta. In: Proceeding of the 11th International Conference on Development of Dry lands. Beijing, China, 18–21 March 2013.
  • OUDA S.A., KHALIL F.A., EL AFANDI G., EWIAS M. 2010a. Using CropSyst model to predict barley yield under climate change condition: I. Model calibration and validation under current climate. African Journal of Plant Science and Biotechnology. Vol. 4. Spec. iss. 1 p. 1–5.
  • OUDA S.A., KHALIL F.A., YOUSEF H. 2009. Using adaptation strategies to increase water use efficiency for maize under climate change conditions. In: Proceeding of the 13th International Conference on Water Technology. Hurghada, Egypt. 12–15 March.
  • OUDA S.A., SAYED M., EL AFANDI G., KHALIL F.A. 2010b. Developing an adaptation strategy to reduce climate change risks on wheat grown in sandy soil in Egypt. In: Proceeding of the 10th International Conference on Development of Dry lands. 12–15 December. Cairo, Egypt.
  • OUDA S., NORELDIN T., ABOU ELENEIN R., ABD EL-BAKY H. 2013. Vulnerability of cotton crop to climate change in salt affected soil. In: Proceeding of the 11th International Conference on Development of Dry lands. Beigin, China, 18–21 March.
  • PALA M., STOCKLE C.S., HARRIS H.C. 1996. Simulation of durum wheat (Triticum turgidum ssp Durum) growth under different water and nitrogen regimes in a Mediterranean environment using CropSyst. Agricultural Systems. Vol. 51. Iss. 2 p. 147–163.
  • QADIR M., GHAFOOR A., MURTAZA G. 2000. Amelioration strategies for saline soils: a review. Land Degradation and Development. Vol. 11. Iss. 6 p. 501–521.
  • RHOADES J. D., KANDIAH A., MASHALI A.M. 1992. The use of saline waters for crop production. FAO Irrigation and Drainage Paper. Rome. No 48. ISBN 92-5-103237-8 pp. 131.
  • SAEEDIPOUR S. 2011. Effect of drought at the postanthesis stage on remobilization of carbon reserves in two wheat cultivars differing in senescence properties. International Journal of Plant Physiology and Biochemistry. Vol. 3 p. 15–24.
  • SATORRE E.H., SLAFER G.A. 1999. Wheat: ecology and physiology of yield determination. CRC Press ISBN 1560228741 pp. 503.
  • SINGH A.K., TRIPATHY R., CHOPRA U.K. 2008. Evaluation of CERES-Wheat and CropSyst models for waternitrogen interactions in wheat crop. Agricultural Water Management. Vol. 95. Iss. 7 p. 776–786.
  • STOCKLE C.O., DONATELLI M., NELSON R. 2003. CropSyst, a cropping systems simulation model. European Journal of Agronomy. Vol. 18. Iss. 3 p. 289–307.
  • STOCKLE C.O., MARTIN S., CAMPBELL G.S. 1994. CropSyst, a cropping systems model: water/nitrogen budgets and crop yield. Agricultural Systems. Vol. 46. Iss. 3 p. 335–359.
  • STOCKLE C.O., NELSON R. 1994. Cropping Systems Simulation: Model Users Manual (Version 1. 02. 00). Biological Systems Engineering Department, Washington State University pp. 167.
  • TAHA A. 2012. Effect of climate change on maize and wheat grown under fertigation treatments in newly reclaimed soil. PhD. Thesis. Tanta University, Egypt.
  • WILLMOTT C.J. 1981. On the validation of models. Physical Geography. Vol. 2 p. 184–194.
  • WOLLENWEBER B., PORTER J.R., SCHELLBERG J. 2003. Lack of interaction between extreme high-temperature events at vegetative and reproductive growth stages in wheat. Journal of Agronomy and Crop Science. Vol. 189. Iss. 3 p. 142–150.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bdbba0ac-101d-475c-8054-24a1f93b9370
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.