PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Reliability Evaluation of Transmission Planetary Gears “bottom-up” approach

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The reliability study is the most important part of the engineering design process, as it is the basis of analysis and assessment of future product performance in exploitation. Since performance cannot be predicted with absolute certainty, the application of reliability theory includes probability theory and unreliability modeling. The proposed approach has been applied to assess the reliability of gear planetary power transmissions. The assessment of system reliability was determined on the basis of the block diagram method, as a function of the reliability of individual components, calculated by statistical analysis. Using the Weibull model, the reliability of the planetary gear was defined on the basis of the probability of failure of the gear teeth and the results were interpreted to assess the reliability of the component and the entire planetary train. For a more precise assessment of reliability and to avoid modeling every failure and mode of occurrence, a competitive risk model was developed. The reliability assessment study was conducted with a “bottom-up” approach. Reliability has been assessed, for instantaneous, estimated and assigned failures rate of planetary train and component.
Słowa kluczowe
Rocznik
Strony
art. no. 2
Opis fizyczny
Bibliogr. 32 poz., rys., tab., wykr.
Twórcy
  • University of Priština Faculty of Technical Sciences temporarily settled in Kosovska Mitrovica, Filipa Višnjiča bb, Kosovska Mitrovica, Serbia
  • University of East Sarajevo Faculty of Mechanical Engineering, Vuka Karadzica 30, East Sarajevo, Republic of Srpska, Bosnia and Herzegovina
autor
  • University of Banja Luka Faculty of Mechanical Engineering, Stepe Stepanovica 71, Banja Luka, Republic of Srpska, Bosnia and Herzegovina
  • University of East Sarajevo Faculty of Mechanical Engineering, Vuka Karadzica 30, East Sarajevo, Republic of Srpska, Bosnia and Herzegovina
  • University of Priština Faculty of Technical Sciences temporarily settled in Kosovska Mitrovica, Filipa Višnjiča bb, Kosovska Mitrovica, Serbia
Bibliografia
  • 1. Aziz ES, Chassapis C. Comparative analysis of tooth-root strength using stress-strength interference (SSI) theory with FEM-based verification. International Journal on Interactive Design and Manufacturing 2014; 8(3), 159–170. https://doi.org/10.1007/s12008-014-0218-3
  • 2. Bai E, Xie L, Ma H, Ren J, Zhang S. Reliability Modeling and Estimation of the Gear System, Mathematical Problems in Engineering, vol. 2018, Article ID 9091684, 2018. https://doi.org/10.1155/2018/9091684.
  • 3. Bertsche, B. (n.d.). Maintenance and Reliability. Reliability in Automotive and Mechanical Engineering, 2008, 338–402. doi:10.1007/978-3-540-34282-3_10
  • 4. Bhardwaj U, Teixeira AP, Guedes Soares C. Reliability prediction of an offshore wind turbine gearbox, Renewable Energy Volume 141, October 2019, 693-70, https://doi.org/10.1016/j.renene.2019.03.136
  • 5. Bodas A, Kahraman A. Influence of Carrier and Gear Manufacturing Errors on the Static Load Sharing Behavior of Planetary Gear Sets, SME International Journal Series C Mechanical Systems, Machine Elements and Manufacturing, 2004 Volume 47(3), 908-915, https://doi.org/10.1299/jsmec.47.908.
  • 6. [DLMF, Eq. 5.4(iii)], http://dlmf.nist.gov/5.4.iii
  • 7. Doganaksoy N. Practical Reliability Engineering, 4th edition, Patrick D. T. O'Connor, Wiley, 2002; Qual. Reliab. Engng. Int., 21: 841-841, https://doi.org/10.1002/qre.703.
  • 8. Elsayed A. Reliability Engineering, 2020, Third Edition. Print ISBN:9781119665922 |Online ISBN:9781119665946 |DOI:10.1002/9781119665946, John Wiley & Sons,
  • 9. Gallego-Calderon J, Natarajan A, Dimitrov NK. Effects of bearing configuration in wind turbine gearbox reliability. In Energy Procedia, Vol. 80, 392–400, 2015; Elsevier Ltd. https://doi.org/10.1016/j.egypro.2015.11.443.
  • 10. Gao P, Xie L, Hu W. Reliability and Random Lifetime Models of Planetary Gear Systems, Hindawi, Shock and Vibration, Volume 2018, Article ID 9106404, https://doi.org/10.1155/2018/9106404.
  • 11. Jedliński Ł. Influence of the movement of involute profile gears along the off-line of action on the gear tooth position along the line of action direction, Eksploatacja i Niezawodnosc - Maintenance and Reliability 2021, 23(4), 736–744, http://doi.org/10.17531/ein.2021.4.16.
  • 12. Leaman F, Vicuña CM, Clausen E. A Review of Gear Fault Diagnosis of Planetary Gearboxes Using Acoustic Emissions. Acoust Aust 49, 265–272, 2021; https://doi.org/10.1007/s40857-021-00217-6.
  • 13. Li M, Xie LY, Li HY, Ren JG. Life Distribution Transformation Model of Planetary Gear System, Chinese Journal of Mechanical Engineering 31, 2018; Article number: 24, https://doi.org/10.1186/s10033-018-0221-x
  • 14. Li X, Li J, He D, Qu Y. Gear pitting fault diagnosis using raw acoustic emission signal based on deep learning. Eksploatacja i Niezawodnosc–Maintenance and Reliability 2019; 21 (3): 403–410, http://dx.doi.org/10.17531/ein.2019.3.6
  • 15. Liu H, Dong Q, Jiang We. A dynamic reliability assessment methodology of gear transmission system of wind turbine, Engineering Computations 2020; https://doi.org/10.1108/EC-06-2019-0272
  • 16. Liu H, Zhang J. A Novel Method for Fault Diagnosis of Planetary Gearbox, Advances in Engineering Research, volume 127, Automation and Mechanical Engineering (EAME 2018). https://doi.org/10.2991/eame-18.2018.34
  • 17. Lyu H, Wang S, Ma L, Zhang X, Pecht M. Reliability modeling for planetary gear transmission system considering dependent failure processes, Wiley, 2022; DOI:10.1002/qre.2972.
  • 18. Lyu H, Wang S, Ma L, Zhang X, Pecht M. Reliability modeling for planetary gear transmission system considering dependent failure processes, Wiley, Quality and Reliability Engineering, 2021, DOI: 10.1002/qre.2972
  • 19. Ognjanović M, Ristić M, Živković P. Reliability for design of planetary gear drive units. Journal Meccanica 2014; 49 (4), 829–841, https://doi.org/10.1007/s11012-013-9830-8
  • 20. Qin D, Zhou Z, Yang J, Chen H. Time-dependent reliability analysis of gear transmission system of wind turbine under stochastic wind load. Journal of Mechanical Engineering Chinese 2012; 48(3), 1–8. https://doi.org/10.3901/JME.2012.03.001
  • 21. Savchuk V, Kuhtov V, Gritsuk IV, Podrigalo M, Vychuzhanin V, Parsadanov I, Bulgakov N, Belousov E, Vrublevskyi R, Samarin O, Kurnosenko D, Verbovskiy V. Providing of Sliding Bearings Reliability of Transmissions Gear Wheels of Transport Cars by Optimization of Assembly Tolerances, SAE International in United States, ISSN: 0148-7191, e-ISSN: 2688-3627, https://doi.org/10.4271/2020-01-2239.
  • 22. Sharma V, Parey A. A Review of Gear Fault Diagnosis Using Various Condition Indicators, Procedia Engineering Volume 144, 2016, 253-263, https://doi.org/10.1016/j.proeng.2016.05.131.
  • 23. Srinivasan R, Paul Robert T. Remaining Useful Life Prediction on Wind Turbine Gearbox, International Journal of Recent Technology and Engineering (IJRTE) ISSN: 2277-3878, 9 (5), January 2021, DOI:10.35940/ijrte.E5145.019521.
  • 24. Stetter R, Göser R, Gress er S, Till M, Witczak M. Fault-tolerant design for increasing the reliability of an autonomous driving gear shifting system. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2020; 22 (3): 482–492, http://dx.doi.org/10.17531/ ein.2020.3.11.
  • 25. Tobias PA, Trindade D. Applied Reliability (3rd ed.). 2011; https://doi.org/10.1201/b11787.
  • 26. Tong C, Tian Y, Yu C. Xing Y. Reliability Sensitivity Analysis of Gear Reducer Based on Probabilistic Design System, Atlantis Highlights in Engineering, volume 3, 3rd Joint International Information Technology, Mechanical and Electronic Engineering Conference (JIMEC 2018).
  • 27. Wang C. Design Reliability—Fundamentals and Applications, B. S. Dhillon, CRC Press, Boca Raton, 1999, ISBN 0849314658. Quality and Reliability Engineering International, 17(6), 471-472. https://doi.org/10.3901/JME.2012.03.001
  • 28. Yang QJ. Fatigue test and reliability design of gears. International Journal of Fatigue 1996; 18(3), 171–177. https://doi.org/10.1016/0142-1123(95)00096-8
  • 29. Yang S, Wang J, Yang H. Evidence Theory based Uncertainty Design Optimization for Planetary Gearbox in Wind Turbine, Journal of Advances in Applied & Computational Mathematics, Vol. 9, 2022, https://doi.org/10.15377/2409-5761.2022.09.7.
  • 30. Yuan Z, Wu Y, Zhang K, Dragoi MV, Liu M. Wear reliability of spur gear based on the cross-analysis method of a nonstationary random process, Advances in Mechanical Engineering, 2018, https://doi.org/10.1177/1687814018819294.
  • 31. Zhang X, Zhao J. Compound fault detection in gearbox based on time synchronous resample and adaptive variational mode decomposition. Eksploatacja i Niezawodnosc–Maintenance and Reliability 2020; 22 (1): 161–169, http://dx.doi.org/10.17531/ein.2020.1.19.
  • 32. Živković P. et al. Assessment of Probability of Gear Tooth Side Wear of a Planetary Gearbox, Technical Gazette 27, 2, 506-512, 2020. https://doi.org/10.17559/TV-20191004093047
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bdbacc5c-21ca-495e-b0a8-8f4fe28b5d24
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.