
Scientific Issues
Jan Długosz University
in Częstochowa
Mathematics XXII (2017)
85–97
DOI http://dx.doi.org/10.16926/m.2017.22.07

A GPGPU–BASED SIMULATOR FOR PRISM:
STATISTICAL VERIFICATION OF RESULTS OF PMC
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Abstract

We describe a GPGPU–based Monte Carlo simulator integrated with Prism. It sup-
ports Markov chains with discrete or continuous time and a subset of properties express-
ible in PCTL, CSL and their variants extended with rewards. The simulator allows an
automated statistical verification of results obtained using Prism’s formal methods.

Keywords: GPGPU, Monte Carlo simulation, Prism, probabilistic model checking,
statistical model checking, probabilistic logics.

1. Introduction

We present a GPGPU–based simulator which extends the model checker
Prism [9]. The simulator uses the Monte Carlo method for a statistical
probabilistic model checking [14, 10] (SPMC). SPMC involves a generation
of a large number of random paths (i.e. samples) in a probabilistic Markov
chain, evaluating a given property on each path, and finally finding an aver-
age of these evaluations, which approximate a correct value of the property.
Monte Carlo methods typically are able to precisely compute confidence
intervals (CI) around the approximated value.

The GPGPU simulator (further called SG) is integrated with Prism,
which allows to check a single model implementation using either one of
Prism’s probabilistic model checking (PMC) methods, or SG. SG sup-
ports the same models and properties as the Prism’s CPU–based simulator
(further denoted SC), yet the latter, lacking GPGPU acceleration and on–
the–fly compilation of the model, is considerably slower.

• Marcin Copik — mcopik@gmail.com
RWTH Aachen University.
• Artur Rataj — arturrataj@gmail.com
Polish Academy of Sciences, Institute of Theoretical and Applied Informatics.
• Bożena Woźna-Szcześniak — b.wozna@ajd.czest.pl
Jan Długosz University in Częstochowa.



86 M. COPIK, A. RATAJ, AND B. WOŹNA-SZCZEŚNIAK

Beside the simulator itself, we present its simple application: an auto-
mated method of verifying property values computed using Prism’s formal
methods. Namely, the user may request, that certain property classes be
computed in two steps:

(1) A PMC step. A property is computed using one of Prism ’s formal
PMC methods;

(2) An automated statistical verification (ASV) step. The obtained
property value v is statistically evaluated using SG; it is then
checked if v fits into a number of confidence intervals (CI) of various
confidence levels.

Because a significant imprecision in a PMC method is typically caused
by some mechanism for reducing computational complexity, the user might
tend to disable such a mechanism, rather than wait for a statistical veri-
fication. This is why it is crucial that the verifying simulator be fast: it
should effectively save user’s time, by providing data in tight CI within a
short time.

The paper is constructed as follows. Section 2 describes what is currently
supported by SG. In Section 3 we provide a description of some implemen-
tation details of SG. In Section 4 ASV is discussed. Section 5 presents a
case study. Finally, the last section concludes the paper.

2. Supported models and properties

SG accepts a specific set of properties, for two finite probabilistic classes
of Markov chains: a discrete-time Markov chain (DTMC) and a continuous-
time Markov chain (CTMC). Unlike DTMC, where each transition corre-
sponds to a discrete time-step, in a CTMC transitions occur in continu-
ous time given by a negative exponential distribution. Both of the classes
can be enriched with rewards structures, resulting respectively in rDTMC
and rCTMC. A reward structure allows to specify two distinct types of
rewards: state (instantaneous) and transition (cumulative) ones, assigned
respectively to states and transitions by means of a reward function. Formal
definitions of all of the above systems can be found e.g. in [8].

The temporal logics Probabilistic Computation Tree Logic (PCTL) [6] and
Continuous Stochastic Logic (CSL) [1] can be used to specify properties for
respectively DTMCs and CTMCs. SG recognises only flat subsets of each
logic. We will refer to these subsets as respectively FlatPCTL and FlatCSL.

Definition 1 (Syntax of FlatPCTL). Let a ∈ AP be an atomic proposition,
∼∈ {<,≤,≥, >}, p ∈ [0, 1] a probability bound, and k is a non–negative
integer or ∞. The syntax of FlatPCTL is defined inductively as follows:

φ ::= P∼p[ψ], ψ ::= Xφ1 | G≤kφ1 | F≤kφ1 | φ1U≤kφ1 | φ1R≤kφ1,
φ1 ::= a | φ1 ∧ φ1 | ¬φ1.
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In the syntax above, we distinguish between state formulae φ, φ1 and
path formulae ψ, which are evaluated over states and paths, respectively.
A property of a model is always expressed as a state formula. The path
modalities (i.e., next state – X, bounded globally – G, bounded eventually –
F≤k, bounded until – U≤k, and bounded release – R≤k), which are standard in
temporal logics, can occur only within the scope of the probabilistic operator
P∼p[·].

Intuitively, a state s satisfies P∼p[ψ] if the probability of taking a path
from s satisfying path formula ψ meets the bound ∼ p. Next, Xφ is true
if φ is satisfied in the next state; G≤kφ is true if φ holds for all time-steps
that are less or equal to k; F≤kφ is true if φ is satisfied within k time-steps;
φ1U

≤kφ2 is true if φ2 is satisfied within k time-steps and φ1 is true from now
on until φ2 becomes true. φ1R≤kφ2 is true if either φ1 is satisfied within k
time-steps and φ2 is true from now on up to the point where φ1 becomes
true, or φ2 holds for all time-steps that are less or equal to k. The formal
semantics over DTMC can be found e.g. in [6, 8].
SG supports also an extension of FlatPCTL allowing specifications over

reward structures by means of the following state formulae: R∼r[C
≤k] |

R∼r[I
=k] | R∼r[Fφ] where ∼∈ {<,≤,≥, >}, r ∈ IR≥0, k ∈ IN, and φ is a

FlatPCTL formula.
The formal semantics over rDTMC can be found in [8]. Here we only

provide an intuition. Namely, a state s of an rDTMC satisfies R∼r[C
≤k], if

from state s the expected reward cumulated after k time-steps satisfies ∼ r.
Next, a state s of an rDTMC satisfies R∼r[I

=k], if from state s the expected
state reward at time-step k satisfies ∼ r. Finally, a state s of an rDTMC
satisfies R∼r[Fφ], if from state s the expected reward cumulated before a
state satisfying φ is reached meets the bound ∼ r.

Definition 2 (Syntax of FlatCSL). Let a and p be as in Definition 1, and
I be an interval of IR≥0. The syntax of FlatCSL is defined inductively as
follows:

φ ::= P∼ p[ψ], ψ ::= Xφ1 | GIφ1 | FIφ1 | φ1UIφ1 | φ1RIφ1,
φ1 ::= a | φ1 ∧ φ1 | ¬φ1.

Satisfying P∼p[ψ] and path modalities are the same for FlatCSL as for
FlatPCTL, except that the parameter of the modalities is an interval I of
the non-negative reals, rather than an integer upper bound. For example,
the path formula φ1UIφ2 holds if φ2 is satisfied at some time instant in the
interval I and always earlier φ1 holds.
SG supports an extension of FlatCSL allowing specifications over reward

structures in a manner similar to FlatPCTL, the only difference are the time
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bounds: R∼r[C
≤t] | R∼r[I

=t] | R∼r[Fφ] where ∼∈ {<,≤,≥, >}, r, t ∈ IR≥0,
and φ is a FlatCSL formula.

The extension of CTMC with rewards is analogous to that of DTMC,
given above, barring the mentioned differences in time bounds. The formal
semantics over rCTMC can be found in [8], see though that SGdoes not
support therein mentioned steady state.

3. Implementation of SG

In a case of Markov models implemented in the Prism language, a gen-
eration of random simulation paths is not computationally expensive. A
single transition consists of an evaluation of its guards, an enumeration of
updates if viable, a random selection of subsequent transitions and finally
an estimation of properties. The syntax of guards and updates allows simple
arithmetical and logical operations and a few basic mathematical functions,
such as a power or a logarithm. Prism comes already with the mentioned
CPU–based simulator SC , well–suited to debugging tasks but slow, as it is
sequential and generates each path by reinterpreting a model specification.

Instead of such an on–the–fly reinterpretation, the tool Ymer [15] com-
piles expressions to a form which is faster to evaluate repeatedly. Another
tool APMC [7], in, turn provides a translation of Prism models to C pro-
grams which are later compiled and executed.

Another obstacle preventing the SC from achieving a reasonable perfor-
mance is its inherent sequentiality. A Monte Carlo simulation is considered
to be embarrassingly parallel – it samples the model by generating a large
number of independent random paths. Prism has approached this problem
by providing the ability to perform distributed sampling, Ymer and APMC
support distributed sampling as well. The latest version of Ymer implement
multi–threaded sampling as well [16].

The improvement in parallel and distributed sampling is limited by the
number of threads supported on multi–core CPU systems. A processor
with a rich set of instructions and multiple cache levels is a perfect tool
for complex and general problems but using it for a simple simulation of a
moderate Markov model would be a very expensive over–engineering, both
financial cost– and energy–wise. On the contrary, recent advances in GPG-
PUs made them a very efficient replacement for such computations, which
benefit from massive parallelism. This simultaneous execution of hundreds
and thousands lightweight threads on a GPGPU comes at a price: well-
known limitations include a restriction of a group of threads to execute the
same instruction at the same time or a burdensome memory model with a
high cost of non–regular memory access patterns. We believe though, that
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those restrictions do not play a significant role in a Monte Carlo simula-
tion of Prism models. For that purpose we have chosen OpenCL [13] as a
framework and programming language for GPGPU simulation.

3.1. Architecture. Our decision to implement the simulator engine for
Prism using OpenCL has been driven by its capability of supporting many
types of devices offered by different vendors, the most common being graphic
cards and multi–core CPU servers. We will further use an OpenCL–specific
terminology.

To simplify the implementation we have used OpenCL bindings for Java,
the main source language of Prism, provided through the JavaCL library [2].

Fig. 1 presents a general scheme of the simulator. Within Prism there is
no significant difference between starting a simulation in using SC or SG.
In both cases a model and a list of properties is required. Then, a just–
in–time source-to-source translation of the model and properties produces
a dedicated compute kernel (block Kernel generator in Fig. 1) which is
basically a program for a number of vector processors, which use a single–
instruction–multiple–data paradigm. The approach is very different from
the reinterpretation scheme implemented in SC , which stores the model
and properties in memory structures, and not as an automatically gener-
ated program. SG executes kernels implemented in OpenCL C language, a
modified version of C99, which has been adapted to OpenCL’s device ab-
straction and stripped from features usually not allowed on a device, such
as recursion or function pointers. Those simple programs can be effectively
compiled into native bytecode of the device (typically, a graphic card). The
syntax of Prism language makes the translation process rather straight-
forward due to the similarity between its expressions and the OpenCL C
language. Only minor and automatically applied changes allow to obtain
an expression valid in the latter language.

3.2. Method. A scheme of generating a single random path (sample) is
presented in Algorithm 1. Capitalised identifiers indicate constants which
are injected into kernel source. Many details have been omitted in the
case of continuous time models. For example, in CTMC both times of
entering and leaving state may be required in certain situations, such as a
bounded until or a property with cumulative reward. The first argument
idx is an unique identifier of kernel instance, offset specifies how many
paths have been processed in kernels previously computed on the device.
The argument seed seeds the generator of pseudorandom numbers. As the
scheme is an equivalent of an OpenCL kernel, the two last arguments are
OpenCL storage buffers in device memory, where the kernel is allowed to
save results of property verification, and also the length of created path used
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Figure 1. The OpenCL-based simulator engine in Prism.

to display sampling statistics. The first loop (lines 5–7) resets the collected
statistical data about properties, the second loop (lines 8–27) generates the
path until any of the following: its maximum length is reached (line 8),
a deadlock (line 14) or a self–loop (line 18) occurs, or all properties are
verified precisely enough (line 24). The last loop (lines 29–31) copies the
collected data into the global memory.

The implementation had to be specially adapted for GPGPU devices,
given that there can be a significant slow–down if the kernel diverges from
the SIMD paradigm. Another example of such change is choosing always
the smallest, most space efficient integer type for holding a state variable,
which is possible as Prism models specify ranges for each such variable. For
efficiency, if a simulated model updates a variable with a value exceeding
these ranges, then the behaviour is undefined. A large speed–up can be
achieved by handling an update synchronised between Prism modules in
one step. If such update is performed on the same copy of state vector,
it may induce a race condition of the type Read-After-Write. SG detects
such situations and creates additional copies of the affected variables, if
necessary, instead of relying on the OpenCL compiler, which might handle
the issue less effectively. Creating only one instance of a state vector is
crucial for performance because it decreases significantly memory space used
by the kernel, as discussed later with memory complexity of the algorithm.
The simulation kernel is also capable of detecting when there is only one
transition available, and it does not change the state. Such a behaviour
indicates that there is only a single self–loop in the current state, which is
interpreted by SG as a stop condition. If there is an unbounded property
which has not been satisfied yet, its value is not going to change. If there is
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a property with a lower bound, which has not been reached yet, it can be
evaluated immediately and the process of simulating the current path ends.

Our pseudorandom number generator of choice is Random123 [12], which
provides a performance satisfying our needs. For more details on model
conversion into a form for GPGPU computation see [3].
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Algorithm 1 A generic path generation algorithm for OpenCL kernel.
1: procedure kernel(idx, offset, seed, path_lengths, property_results)
2: prng ← initialize_prng(seed, idx, offset) . A distinct seed for each

path
3: state_vector ← INITIAL_STATE_VECTOR
4: time← 0
5: for each property p ∈ PROPERTIES do
6: reset(results_p)
7: end for
8: for i < MAX_PATH_LENGTH do
9: active_updates← evaluate_guards(state_vector) . Single and

synchronised
10: time_update(time) . More complex for CTMC
11: for each property p ∈ PROPERTIES do
12: active_properties ← property_p_update(state_vector,

results_p, time)
13: end for
14: if active_updates = 0 then
15: break . Deadlock detected
16: end if
17: no_change← update(prng, state_vector, active_updates)
18: if no_change ∧ active_updates = 1 then
19: for each property p ∈ PROPERTIES do
20: active_properties← property_p_update(state_vector,

results_p, time)
21: end for
22: break . Loop detected
23: end if
24: if ¬active_properties then
25: break . Stop sampling
26: end if
27: end for
28: path_lengths[idx + offset] = i . Save results in global memory
29: for each property ∈ property_results do
30: property[idx + offset] = results_p . Save results in global

memory
31: end for
32: end procedure

A generated kernel is passed as a string of source code to a specific device
compiler (block OpenCL compiler in Fig. 1). This compilation does not add
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a significant overhead on modern OpenCL platforms – we have found that it
typically takes less than one second for tested models. A kernel represented
in device bytecode is sent to simulator’s runtime (see again Fig. 1), where a
range of work items is enqueued on the device, as described in more details
in the next section. Each one of them is responsible for producing exactly
one random path through the model and its identifier idx, is paired with
an offset, in order to produce a unique key across many separate kernel
enqueued on the device. The key is necessary for correct accessing memory
storage and unique random seeds for each generated path.

4. Automatic statistical verification

The ASV step is optionally triggered at the user request, in one of the
following ways:

• unconditionally;
• if a quantitative property is being computed, like the probability
value;
• if a steady state is detected prematurely in an iterative PMC
method.

The last criterion is discussed in more detail in the example in Section 5.
The ability to process an extensive number of samples in a very short

time often allows for a reliable and fast ASV of a property value v obtained
using PMC. In the ASV step, in order to save the user’s time, SG must
finish within a predefined time Tmax.

After the ASV step, the user is presented with a set of diagnostics, so
that he can estimate the correctness of v. Let the simulator estimate a
value w of the same property. Let RCI be the ratio of the width of CI at
confidence level 90% to w. The following independent diagnostics can be
presented:

• Tmax too low to reach RCI < RCI
max; RCI

max has a default value of
1 · 10−2 and can be customised;
• v within a CI of a confidence level x, outside a CI of a confidence
level y, where x ∈ L = {90%, 95%, 99%}, y ∈ L ∨ {< 90%}.

5. Case study

An instantaneous reward in a CTMC can be estimated by weighting the
reward function over a probabilistic distribution of states at a time instant
t. Prism computes the distribution by uniformisation (Jensen’s method) [5]
which discretises the CTMC with respect to a constant rate. Then, prob-
abilities are approximated by a finite summation Z of Poisson–distributed
steps of the derived DTMC. The number of these steps depends on the
precision required, and is computed using the Fox–Glynn method [4]. Yet,
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Figure 2. (a) Estimates of Exp(Cr), CIs are narrow enough
to be hardly seen, thus their magnification by 100 is also
show. (b) elapsed CPU time and the number of samples per
single property, Ti and Ts are total times of, respectively, the
formal method performing Z, and the statistical estimation
on SG, N is the number of samples chosen by SG in order
to fit within Tmax.

in order to shorten computation time, when performing that summation,
Prism also tests, if a steady state has been reached, by finding a maximum
difference, either relative or absolute, between elements in solution vec-
tors from two successive steps. If the difference is smaller than a constant
threshold ε, the summation is terminated early.

Prism’s default criterion of the termination is to use a relative difference
and ε = 10−6. The criterion can be customised in order to set a compromise
between precision and computational complexity.

To illustrate the ASV, we will discuss a model where the detection of a
steady state is premature if the default termination criterion is used. In
effect, were the automatic SV not enabled, the user would obtain incorrect
results without a warning.

We will use a modified Model 2 from [11]. It is a simple CTMC with
multiple clients and servers, in which some of the servers can occasionally
be broken. To trigger the said premature termination of Z, we modify
the model by using constants rs = 1, rl = 500 (see [11] for details), i.e.
the server is slower at initiating a connection with a client, but faster at
processing a request. We ask for an expected instantaneous reward value
Cr, equal to the number of clients requesting at a given time instant t.
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Figure 3. Computation time on two OpenCL devices.

Let the user choose the default termination criterion, and let he also
request, that SV be used for up to Tmax = 1.5 sec. after a PMC step
such that a steady state detection has terminated early Z (or any other
formal iterative method which uses ε). Exp(Cr) against t, found using both
a formal PMC and SG, is depicted in Fig. 2(a). We see that the model
undergoes a fast change at t ≈ 100, during which the increase of requests
becomes rapidly slower. The constant Tmax allows for a fairly narrow CI
at 99% confidence level – its width never reaches 0.1. In the case of the
discussed diagram RCI < 4 · 10−4 for any t – such a narrow CI makes it
probable that following the said change at t ≈ 100, the PMC results become
less and less precise. This would trig respective warnings, that values from
the results of the PMC step fall outside a CI of a high confidence level.

The relative temporal overhead of SV for the chosen Tmax is illustrated
in Fig. 2(b). It is largest for small t and makes Prism run for about 50%
longer. For t & 200 Prism needs less than 10% of an additional CPU time
to perform the SV step. The figure also shows the number of samples which
can be computed within Tmax; wee see that the number decreases for larger
t due to longer paths which need to be generated by the simulator.

In order to obtain the CPU times in Fig. 2(b), we have used an AMD
R9 Nano, a modern mid-range GPU with 4096 stream processors. Let us
compare that GPU to another OpenCL device, containing two Intel Xeon
E5-2630 v3 CPUs with clock frequency 2.40GHz, each of them providing
8 cores with HyperThreading, resulting in 32 threads for OpenCL. Fig. 3
compares the simulation time from Fig. 2(b) to that of the CPU OpenCL
device, both evaluating the same number of samples. In the case of the
latter device, we see times in the range of 8 and 12 seconds, i.e. it is several
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times slower. This shows the advantage of streams processors in the case of
a large number of independent, non–memory intensive tasks.
SC has been excluded from the chart as it is not optimised for speed.

At t = 2000, where long paths make it especially advantageous to use the
on–the–fly compilation, it took SC over 130 minutes to evaluate the same
reward property on the same CPU, thousands of times slower comparing a
respective simulation on a GPGPU.

6. Discussion

The SV limits itself now to diagnostics, but it could be straightforwardly
extended to influence on the PMC step. For example, if a property pi
turns out to be computed imprecisely in the PMC step, and the following
property to compute pi+1 differs only in the time instant t, the SV could
automatically decrease ε for the computation of pi+1.

We expect to release an open-source version of the tool in the following
months. The further development would be focused on a parallelisation
across multiple OpenCL devices, with a dynamic and automatic load bal-
ancing.
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E-mail address: b.wozna@ajd.czest.pl


