PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Static Analysis of Selected Design Solutions for Weight-Reduced Gears

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents an analysis of selected design solutions for spur gears with reduced weight, in which the results obtained are compared to a solid gear without modifications. The reduction of the weight of the gears is of particular importance, among others in the automotive and aviation industries, where it reduces energy consumption, and thus CO2 emissions. It is also important to remember to maintain the required strength parameters when reducing the mass of the gear. This article focuses on the analysis of deformation and stress due to a given load on the considered weight-reduced gears. The values of the obtained static analysis results of the reduced-weight gears were also compared to the base gear.
Twórcy
  • Rzeszow University of Technology, Faculty of Mechanical Engineering and Aeronautics, Department of Mechanical Engineering, Powstańców Warszawy 12 Av., Rzeszów 35-959, Poland
  • Rzeszow University of Technology, Faculty of Mechanical Engineering and Aeronautics, Department of Mechanical Engineering, Powstańców Warszawy 12 Av., Rzeszów 35-959, Poland
  • Rzeszow University of Technology, Faculty of Mechanical Engineering and Aeronautics, Department of Mechanical Engineering, Powstańców Warszawy 12 Av., Rzeszów 35-959, Poland
  • Rzeszow University of Technology, Faculty of Mechanical Engineering and Aeronautics, Department of Mechanical Engineering, Powstańców Warszawy 12 Av., Rzeszów 35-959, Poland
Bibliografia
  • 1. Sobolewski B., Budzik G. and Dziubek T. Analiza rozwiązań konstrukcyjnych kół zębatych o zmniejszonej masie. Autobusy. 2017; 10/2017: 37–39.
  • 2. Singh P.K. and Saini R. Static analysis of epoxy resin and carbon fibre composite spur gear. Materials Today: Proceedings. 2022; 50(5): 2443–2449. https://doi.org/10.1016/j.matpr.2021.10.289.
  • 3. Khanna R. and Sinha P.K. Structural Analysis of Spur Gear with Composite Material Under Different Loading Conditions. in Recent Advances in Mechanical Engineering. Singapore: Springer. 2021; 599–604.
  • 4. Singh P.K., Mausam K. and Islam A. Achieving better results for increasing strength and life time of gears in industries using various composite materials. Materials Today: Proceedings. 2021; 45(2):3068–3074. https://doi.org/10.1016/j.matpr.2020.12.062.
  • 5. Wojnar G. and Juzek M. The impact of non-parallelism of toothed gear shafts axes and method of gear fixing on gearbox components vibrations. Acta Mechanica Et Automatica. 2018; 12(2): 165–171. DOI: 10.2478/ama-2018–0026.
  • 6. Rajeshkumar S. and Manoharan R. Design and analysis of composite spur gears using finite element method. IOP Conference Series: Materials Science and Engineering. 2017; 263(6). https://doi.org/10.1088/1757–899X/263/6/062048.
  • 7. Chawathe D.D. Handbook of Gear Technology. New Age International Publication. 2011; 26–89, 305–536, 579–706.
  • 8. Muminovic A.J., Colic M., Mesic E. and Saric I. Innovative design of spur gear tooth with infill structure. Bulletin of the Polish Academy of Sciences: Technical Sciences. 2020; 68(3). DOI: 10.24425/bpasts.2020.133370.
  • 9. Chavadaki S., Nithin Kumar K.C. and Rajesh M.N. Finite element analysis of spur gear to find out the optimum root radius. Materials Today: Proceedings. 2021; 46(20): 10672–10675. https://doi.org/10.1016/j.matpr.2021.01.422.
  • 10. Karuppanan S. and Patil S. Frictional stress analysis of spur gear with misalignments. Journal of Mechanical Engineering and Sciences. 2018; 12(2): 3566–3580. https://doi.org/10.15282/jmes.12.2.2018.4.0316.
  • 11. Vunnam Naga Sai, Kakumani Venkata Siva Prasad, Jangala Sai Sri Laxman and P.S. Rama Sreekanth. Comparative analysis and simulation of metal and non-polymer composite gears. Materials Today: Proceedings, Nov. 2021. [Online]. Available: https://doi.org/10.1016/j.matpr.2021.10.174 [Accessed: 12 Nov. 2021].
  • 12. Lisle T.J., Shaw B.A. and Frazer R.C. Internal spur gear root bending stress: A comparison of ISO 6336:1996, ISO 6336:2006, VDI 2737:2005, AGMA, ANSYS finite element analysis and strain gauge techniques. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 2019; 233(5): 1713–1720. https://doi.org/10.1177%2F0954406218774364.
  • 13. Shaik M.A.R., Kumar E.P. and Basha S.S. Finite Element Analysis and Fatigue Analysis of Spurgear under Random Loading. International Journal of Scientific Engineering and Technology Research. 2017; 6(30): 5854–5858.
  • 14. Tchórz T., Śnieżek L. and Grzelak K. Contact Fatigue Strength of 21NiCrMo2 Steel Gears Subjected to Shot Peening Treatment. AIP Conference Proceedings: Fatigue Failure and Fracture Mechanics XXVII. 2018; 2028. https://doi.org/10.1063/1.5066411.
  • 15. Wang Z.G., Hirasawa K., Yoshikawa Y. and Osakada K. Forming of light-weight gear wheel by plate forging. CIRP Annals-Manufacturing Technology. 2016; 65(1): 293–296. https://dx.doi.org/10.1016/j.cirp.2016.04.134.
  • 16. Tekkaya A.E., Khalifa N.B., Grzancic G. and Hölker R. Forming of Lightweight Metal Components: Need for New Technologies. Procedia Engineering. 2014; 81: 28–37. https://doi.org/10.1016/j.proeng.2014.09.125.
  • 17. Varun S.R., Govindaraju M., Ramu M. and Satheeshkumar V. Influence of Metal Foam Properties on Performance of Polymer Composite Materials. Materials Today: Proceedings. 2020; 24(2): 1244–1250. https://doi.org/10.1016/j.matpr.2020.04.439.
  • 18. Muminovic A.J., Muminovic A., Mesic E., Saric I. and Pervan N. Spur Gear Tooth Topology Optimization: Finding Optimal Shell Thickness for Spur Gear Tooth produced using Additive Manufacturing. TEM Journal. 2019; 8(3): 788–794. DOI: 10.18421/TEM83–13.
  • 19. Höhn B.-R., Michaelis K. and Wimmer A. Low loss gears. Gear Technology. 2007; 28–35.
  • 20. Magalhães L., Martins R., Locateli C. and Seabra J. Influence of tooth profile and oil formulation on gear power loss. Tribology International. 2010; 43(10): 1861–1871. https://doi.org/10.1016/j.triboint.2009.10.001.
  • 21. Höhn B.-R., Michaelis K. and Doleschel A. Frictional behaviour of synthetic gear lubricants. Tribology Series. 2001; 39: 759–768. https://doi.org/10.1016/S0167–8922(01)80156–5.
  • 22. Major B., Sandu A.V., Abdullah M.M.A.B., Nabiałek M., Tański T. and Zieliński A. Modern materials- obtaining and characterization (alloys, polymers). Bulletin of the Polish Academy of Science: Technical Science. 2021; 69(5). DOI: 10.24425/bpasts.2021.139318.
  • 23. Mao K., Langlois P., Madhav N., Greenwood D. and Millson M. A Comparative study of Polymer Gears Made of Five Materials. Gear Technology. 2019; 68–72.
  • 24. Singh A.K. and Singh P.K. Polymer spur gears behaviours under different loading conditions: A review. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology. 2018; 232(2): 210–228. DOI: 10.1177/1350650117711595.
  • 25. Ondrušová D., Labaj I., Pajtášová M., Vršková J., Božeková S., Feriancová A. and Skalková P. Target modification of the composition of polimer systems for industrial applications. Bulletin of the Polish Academy of Sciences: Technical Sciences. 2021; 69(2). DOI: 10.24425/bpasts.2021.136721.
  • 26. Zhenglong Z., Bin S., Jiangang L., Zhiguang D. and Zhongbo H. Research on ride comfort performance of a metal tire. Bulletin of the Polish Academy of Sciences: Technical Sciences. 2020; 68(3): 491–502. DOI: 10.24425/bpasts.2020.133384.
  • 27. Oleksy M. Materiały polimerowe stosowane na elementy maszyn. Rzeszów: Oficyna Wydawnicza Politechniki Rzeszowskiej, 2019; 113–116.
  • 28. Konstrukcje z tworzyw sztucznych. Praktyczny poradnik zasady doboru materiałów. Warszawa: Wydawnictwo Informatyzacji Zawodowej ALFA-WEKA Sp. z o. o., 1997.
  • 29. Markowski T., Budzik G., Kozik B., Dziubek T., Sobolewski B. Modeling 3D CAD and Rapid Prototyping the presenter planetary gear. Scientific Journal of Silesian University of Technology – Series Transport. 2014; 83: 155–162.
  • 30. Przeszłowski Ł., Budzik G., Dziubek T. and Sobolewski B. Toothed wheel and method for manufacturing of the toothed wheel. Poland Patent Pat.236610, Apr. 2018.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bdb99c78-507b-464b-9743-48f4f6ea5282
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.