PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Crack Propagation Tests for Load Sequences Developed Using Different Flight Parameters of a Trainer Aircraft

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Military aircraft are subjected to highly variable and unpredictable loads due to diverse mission profiles, armament configurations, and individual piloting styles. This variability complicates the definition of precise load spectra, particularly in cases where data loss occurs due to Flight Data Recorder (FDR) malfunctions or data mishandling. This paper investigates the use of different flight parameters, such as load factor (nz), barometric height (Hb), and horizontal velocity (Vp), to define load sequences for the PZL-130 “Orlik” TC-II military trainer aircraft. These sequences were then used to evaluate crack propagation using Compact Tension (CT) specimens. The results show that the incorporation of additional flight parameters improves the accuracy of crack propagation predictions when compared to direct strain measurements. This study highlights the potential of using available flight data to develop reliable load spectra for fatigue life estimation in military aircraft, even when direct load measurements are not financially feasible.
Rocznik
Tom
Strony
155--165
Opis fizyczny
Bibliogr. 14 poz., rys., tab., wykr.
Twórcy
autor
  • Air Force Institute of Technology, Ks. Bolesława 6, 01-494 Warsaw, Poland
  • Military University of Technology, gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland
  • Air Force Institute of Technology, Ks. Bolesława 6, 01-494 Warsaw, Poland
autor
  • Air Force Institute of Technology, Ks. Bolesława 6, 01-494 Warsaw, Poland
  • Air Force Institute of Technology, Ks. Bolesława 6, 01-494 Warsaw, Poland
  • Air Force Institute of Technology, Ks. Bolesława 6, 01-494 Warsaw, Poland
  • Military University of Technology, gen. Sylwestra Kaliskiego 2, 00 -908 Warsaw, Poland
  • Lukasiewicz Research Network - Institute of Aviation, al. Krakowska 110/114, 02-256 Warsaw, Poland
Bibliografia
  • ASTM International. (2024). Standard test method for measurement of fatigue crack growth rates (ASTM E647-24).
  • Daverschot, D., Mattheij, P., Renner, M., Ardianto, Y., De Araujo, M., & Graham, K. (2020). Full-scale fatigue testing from a structural analysis perspective. In A. Niepokolczycki & J. Komorowski (Eds.), ICAF 2019 - Structural Integrity in the Age of Additive Manufacturing. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-21503-3_62
  • Gillet, O., & Bayart, B. (2020). Fatigue crack growth approach for fleet monitoring. In A. Niepokolczycki & J. Komorowski (Eds.), ICAF 2019 - Structural Integrity in the Age of Additive Manufacturing. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-21503-3_78
  • Jenkins, J. M., & DeAngelis, V. M. (1997). A summary of numerous strain-gage load calibrations on aircraft wings and tails in a technology format. NASA Technical Memorandum 4804. NASA, Edwards, California.
  • Jiao, R., He, X., & Li, Y. (2018). Individual aircraft life monitoring: An engineering approach for fatigue damage evaluation. Chinese Journal of Aeronautics, 31(5), 1000-1009. https://doi.org/10.1016/j.cja.2018.02.002
  • Kottkamp, E., Wilhelm, H., & Kohl, D. (1976). NATO Advisory Group for Aerospace Research and Development. AGARDograph No. 160 (Vol. 7).
  • Leski, A., Kurdelski, M., Reymer, P., Dragan, K., & Sałaciński, M. (2015). Fatigue life assessment of PZL-130 Orlik structure - Final analysis and results. In Proceedings of the 28th ICAF Symposium (Helsinki, June 5-5, 2015).
  • Molent, L., Barter, S. A., White, P., & Dixon, B. (2009). Damage tolerance demonstration testing for the Australian F/A-18. International Journal of Fatigue, 31(7), 1163-1171. https://doi.org/10.1016/j.ijfatigue.2008.05.009
  • Nesterenko, B. G., Nesterenko, G. I., Konovalov, V. V., & Senik, V. Y. (2020). Russian practice to provide safe operation of airplane structures with long-term operation. In A. Niepokolczycki & J. Komorowski (Eds.), ICAF 2019 - Structural Integrity in the Age of Additive Manufacturing. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-21503-3_22
  • Reymer, P., & Leski, A. (2011). Flight loads acquisition for PZL-130 Orlik TCII full scale fatigue test. Fatigue of Aircraft Structures, 1(1), 78-85.
  • Reymer, P., Kurdelski, M., Leski, A., Leśniczak, A., & Dziendzikowski, M. (2017). Introduction of an individual aircraft tracking program for the Polish Su-22. Fatigue of Aircraft Structures, 9(1), 101-108. https://doi.org/10.1515/FAS-2017-0008
  • Reymer, P., Leski, A., & Kurdelski, M. (2012). Introduction of a structure integrity program for a military trainer aircraft. In Proceedings of the 28th Congress of the International Council of the Aeronautical Sciences (ICAS 2012) (Vol. 6).
  • Skopionski, T. H., Aiken, W. S., & Huston, W. B. (1954). Calibration of strain-gage installations in aircraft structures for the measurement of flight loads. NACA Report No. 1178.
  • U.S. Department of Defense. (2016). Department of Defense standard practice: Aircraft structural integrity program (ASIP) (MIL STD-1530D).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bdb46224-156f-49bc-8402-cc557cbc8ed3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.