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Abstract  

The paper concerns analysis of nonlinear vibration of the rotating system consisted of two disks and shaft. The 
analytical multiple time scale method is applied to the analysis dynamics of the system near main resonance. 
The transition phenomenon depending on the value of the nonlinearity parameter is discussed. All the analyti-
cal results have been confirmed numerically. 
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1. Introduction 

Torsional vibrations are one of main problem in design of the power transmission sys-
tems [2]. Dynamic stresses caused by torsional vibrations, especially when their ampli-
tudes grow significantly near resonance, may be very large and lead to failure of the 
whole system. 

Both discrete and continuous models are commonly used in order to investigate the 
torsional vibrations of the power transmission systems [1,4,6]. We have attempted to 
apply the Limiting Phase Trajectories (LPT) method in order to investigate nonlinear 
torsional vibrations. LPT is an analytical approximate method, developed recently by 
Manevitch and used to analyse of discrete systems [3]. The discrete model was chosen as 
the most convenient to use this method. Similar approach was applied in [5]. 

2. Mathematical model 

Let us consider a rotating system, consisting of two disks mounted on a shaft. The sys-
tem studied is shown in Fig. 1. The disks are considered as rigid. Their moments of iner-
tia around the axis of rotation are denoted by I1 and I2, respectively. The shaft is relative-
ly thin and light, so its mass may be neglected. The shaft provides torsional stiffness 
only. The nonlinear relationship between the angle of twist and the torque was assumed. 
Two coefficients of stiffness, marked by k and kn, are introduced. Moreover viscous 
damping, of which the damping coefficient equal to c, is taken into account. The whole 
system is mounted on frictionless bearings which are also ideal in the geometric sense. 
One of the disks is under the action of the harmonically changing torque 
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)cos()( 00 tpMtM = . The system has two degree of freedom. The angles of rotation of 

both wheels are chosen as the generalized coordinate. 
 

 

Figure 1. Model of rotating system 

The Lagrangian of the system is as follows:  
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where I1 and I2 are the moments of inertia, k and kn are the stiffness coefficients. 
The equations of motion are as follows 
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Dividing eqs. (2) and (3) respectively by I1 and I2 and substracting then eq (2) from eq 
(3) we obtain the equation, in which only the differences of  the unknown functions and 
their derivatives are present. Hence let us introduce the new function 

 )()()( 21 ttt ϕϕ −=Φ . (4) 

The function )(tΦ  is simply the angle of twist of the shaft between the discs. The substi-

tution (4) leads to the equation  
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where 21 // IkIkK += , 21 // IkIk nne +=η , 21 // IcIcC += . 

The eq. (5) describes the internal motion which is especially important with respect of 
vibrational process.   

Introducing dimensionless time tK=τ , the more convenient form of the equation 

of motion can be written: 

 τµτφγτφητφτφ pee cos)()()()( 3 =+++ &&& , (6) 

where 2
10 / KIM=µ , Kpp /0= , KCe /=γ  and φ  is the angle of twist with respect to τ . 
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3. Asymptotic solution 

Further analysis concerns the eq. (6). Let us assume that the system is weakly nonlinear 
and moreover the damping coefficient and the amplitude of the external torque are of the 
order of small parameter. The above assumptions allow to write the governing equation 
in the form: 

 ( )τεεηφφφεγφ pf cos282 3 =+++ &&& , (7) 

where µεηεηγεγ === fee 2,8,2 . 

The initial conditions are assuming to be homogeneous ( ) 00 =φ , ( ) 00 =φ& . 

Let us introduce the function ( ) ( )τφτ &=v . Then the eq. (7) can be written as the set of 

equations of the first order: 

 
( ).cos282

,0
3 τεεηφφφεγ

φ

pfv

v

=+++

=−
&&

&

 (8) 

The key point for the next analysis is the introduction complex functions 

 φψ iv +=  and φψ iv −= . (9) 

Substituting the definitions (9) into eq. (8) we obtain the equation  
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with the initial conditions ( ) 00 =ψ , which is equivalent to the system (8).  

After introducing once more substitution 

 τψ ieΨ=
 
and τψ ie−Ψ= , (11) 

\we get the following equation with unknown complex function )(τΨ .  
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with the initial condition ( ) 00 =Ψ . The appropriate complex conjugate formulation 

could be written as well.  
Let us focus attention on the case of the main resonance, that occurs when 1≈p . In 

order to consider this case, the small detuning parameter σ is introduced in the form 
σεσ ~11 +=+=p . 

The initial value problem (12) is solved with the help of the Multiple Scale Method. 
Let us introduce two time scales ττ =0  and εττ =1 . The assumed form of the solution 

is as follows: 
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 ( ) ( ) ( )101100 ,, ττετττ Ψ+Ψ=Ψ . (13) 

After substituting (13) into eq. (12) and arranging it with respect to powers of small 
parameter ε  we obtain 

• the equation of order ε0  
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• the equation of order ε1  
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From eq. (14) appears that ( )100 τΨ=Ψ . 

The solution of eq. (15) should be limited. In that reason, the secular terms in (15) 
should be eliminated. That leads to the solvability condition 
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Introducing polar representation 
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where ℜ∈δ,a , we obtain the new form of the solvability condition  
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Taking advantage of the fact that a(τ1) and δ(τ1), then multiplying the eq. (18) by ε 
and returning to the original denotations occurring in (6), one can obtain  
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Writing the exponential functions in the trigonometric form, and then separating real 
and imaginary parts in the equation, we have 
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where θ  = στ  - δ  is modified phase. The eqs. (20) describe the modulation of the am-
plitude a and the modified phase θ. 
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4. Non-steady vibrations 

In order to apply the LPT method, let us consider the non-damped vibrations (γe = 0). In 
that case the set of equations (20) has the first integral 
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where the constant of the right side depends on the initial conditions. The eq. (21) repre-
sents one-parameter family of the curves on the plane (a, θ). 

We are especially interested in the case, when maximal energy exchange between the 
system and the external loading appears. This situation takes place for H=0. In that case 
the first integral (21) has the form: 

 0316sin16 3 =−+− aa eησθµ . (22) 

It is easy to show that the curve given by eq. (22) has extrema for θ = - π/2 and 
θ = π/2. The qualitative change in the behaviour of the system is observable for the criti-
cal value of nonlinearity parameter   
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In Figure 2 the trajectory curves on the plane (a, θ) for three values of ηe obtained 
from (22) are presented. All the graphs presented in the Figs. 2-6 are made assuming σ 
= 0.01, µ= 0.002. 

 

 

Figure 2. Phase trajectories for three values of ηe. 
Points 1, 2, 3, 4 identify roots of the eq. (22) for  θ = –π/2 and θ = π/2 
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The maximum values of the amplitude amax(ηe) of vibrations are presented in Fig. 3. 
Points 1,2,3 and 4 in this figure identify the same solutions as in Fig. 2.  

 

 

Figure 3. Graphs of  amax(ηe) according to  (22); thick line identifes amax; thin line 
reflect the open trajectories in the plane (a, θ) and do not describe vibrations 

There is one more qualitative change in the phase portrait of vibrations on the plane 
(a, θ) for ηe = 2ηc. The metamorphoses of behavior of the system is clearly visible in 
time history of general co-ordinate. When ηe exceeds the critical value ηc or 2ηc, the 
shape of modulation of amplitude rapidly changes. Amplitude modulation in time τ, 
obtained from the eqs. (20), are presented in Figs. 4-6.  

 

 

Figure 4. Amplitude modulation for eη  just below cη   (σ = 0.01, µ = 0.002) 
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Figure 5. Amplitude modulation for eη   just above cη   (σ = 0.01, µ = 0.002) 
 

 

Figure 6. Amplitude modulation for eη  just above 2 cη   (σ = 0.01, µ = 0.002) 

There are no other transformations of the phase-plane portraits and qualitative chang-
es in behavior of a and θ  for eη  > 2 cη . 

5. Conclusions  

Analysis of the nonlinear disks-shaft system has been done. The  asymptotical Multiple 
Time Scale method has been adopted to solve the problem. It allowed us to exhibit an 
important dynamical transition in the non-steady state vibrations, leading to the drastic 
change of amplitude with increasing nonlinearity parameter (see Figs. 4- 6). The maxi-
mal amplitudes and trajectories on the plane (a, θ)  have been presented (see Figs. 2,3). 
The graphs presented in the paper indicate the intensive energy exchange between the 
system and external excitation. All presented results have been obtained analytically and 
confirmed numerically.   
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