PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Predicting the Costs of Forwarding Contracts: Analysis of Data Mining Competition Results

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
Federated Conference on Computer Science and Information Systems (17 ; 04-07.09.2022 ; Sofia, Bulgaria)
Języki publikacji
EN
Abstrakty
EN
We discuss the international competition FedCSIS 2022 Challenge: Predicting the Costs of Forwarding Contracts that was organized in association with the FedCSIS conference series at the KnowledgePit platform. We explain the scope and outline the results obtained by the most successful teams.
Rocznik
Tom
Strony
399--402
Opis fizyczny
Bibliogr. 20 poz., wykr.
Twórcy
  • Institute of Informatics, University of Warsaw, Warsaw, Poland
  • QED Software, Warsaw, Poland
  • QED Software, Warsaw, Poland
  • Control System Software, Sopot, Poland
  • Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland
Bibliografia
  • 1. E.-S. Lee and D.-W. Song, “Knowledge Management in Freight Forwarding as a Logistics Intermediator: Model and Effectiveness,” Knowledge Management Research & Practice, vol. 16, no. 4, pp. 488–497, 2018. [Online]. Available: https://doi.org/10.1080/14778238.2018.1475848
  • 2. R. Burkovskis, “Efficiency of Freight Forwarder’s Participation in the Process of Transportation,” Transport, vol. 23, no. 3, pp. 208–213, 2008. [Online]. Available: https://doi.org/10.3846/1648-4142.2008.23. 208-213
  • 3. J.-A. Moscoso-López, I. T. Turias, M. Come, J. Ruiz-Aguilar, and M. Cerbán, “Short-Term Forecasting of Intermodal Freight Using ANNs and SVR: Case of the Port of Algeciras Bay,” Transportation Research Procedia, vol. 18, pp. 108–114, 2016. [Online]. Available: https://doi.org/10.1016/j.trpro.2016.12.015
  • 4. A. Balster, O. Hansen, H. Friedrich, and A. Ludwig, “An ETA Prediction Model for Intermodal Transport Networks Based on Machine Learning,” Business & Information Systems Engineering, vol. 62, no. 5, pp. 403–416, 2020. [Online]. Available: https://doi.org/10.1007/s12599-020-00653-0
  • 5. S. Wickramanayake and H. D. Bandara, “Fuel Consumption Prediction of Fleet Vehicles Using Machine Learning: A Comparative Study,” in 2016 Moratuwa Engineering Research Conference, MERCon 2016, 2016, pp. 90–95. [Online]. Available: https://doi.org/10.1109/MERCon.2016.7480121
  • 6. M. A. Hamed, M. H. Khafagy, and R. M. Badry, “Fuel Consumption Prediction Model Using Machine Learning,” International Journal of Advanced Computer Science and Applications, vol. 12, no. 11, 2021. [Online]. Available: https://doi.org/10.14569/IJACSA.2021.0121146
  • 7. K. Tsolaki, T. Vafeiadis, A. Nizamis, D. Ioannidis, and D. Tzovaras, “Utilizing Machine Learning on Freight Transportation and Logistics Applications: A Review,” ICT Express, 2022. [Online]. Available: https://doi.org/10.1016/j.icte.2022.02.001
  • 8. Y. Konishi, S.-i. Mun, Y. Nishiyama, and J. E. Sung, Determinants of Transport Costs for Inter-regional Trade. Research Institute of Economy, Trade and Industry, 2012.
  • 9. B. Kordnejad, “Intermodal Transport Cost Model and Intermodal Distribution in Urban Freight,” Procedia – Social and Behavioral Sciences, vol. 125, pp. 358–372, 2014. [Online]. Available: https://doi.org/10.1016/j.sbspro.2014.01.1480
  • 10. S. Camisón-Haba and J. A. Clemente, “A Global Model for the Estimation of Transport Costs,” Economic Research – Ekonomska Istraživanja, vol. 33, no. 1, pp. 2075–2100, 2020. [Online]. Available: https://doi.org/10.1080/1331677X.2019.1584044
  • 11. S. Nataraj, C. Alvarez, L. Sada, A. Juan, J. Panadero, and C. Bayliss, “Applying Statistical Learning Methods for Forecasting Prices and Enhancing the Probability of Success in Logistics Tenders,” Transportation Research Procedia, vol. 47, pp. 529–536, 2020. [Online]. Available: https://doi.org/10.1016/j.trpro.2020.03.128
  • 12. A. Singh, A. Das, U. K. Bera, and G. M. Lee, “Prediction of Transportation Costs Using Trapezoidal Neutrosophic Fuzzy Analytic Hierarchy Process and Artificial Neural Networks,” IEEE Access, vol. 9, pp. 103 497–103 512, 2021. [Online]. Available: https://doi.org/10.1109/ACCESS.2021.3098657
  • 13. A. Janusz and D. Ślęzak, “KnowledgePit Meets BrightBox: A Step Toward Insightful Investigation of the Results of Data Science Compe- titions,” in Proceedings of the 2022 Federated Conference on Computer Science and Intelligence Systems, Sofia, Bulgaria, September 4-7, 2022, ser. Annals of Computer Science and Information Systems, M. Ganzha, M. Paprzycki, and D. Ślęzak, Eds., vol. 30, 2022.
  • 14. A. Janusz, T. Tajmajer, M. Świechowski, Ł. Grad, J. Puczniewski, and D. Ślęzak, “Toward an Intelligent HS Deck Advisor: Lessons Learned from AAIA’18 Data Mining Competition,” in Proceedings of the 2018 Federated Conference on Computer Science and Information Systems, FedCSIS 2018, Poznań, Poland, September 9-12, 2018, ser. Annals of Computer Science and Information Systems, M. Ganzha, L. A. Maciaszek, and M. Paprzycki, Eds., vol. 15, 2018, pp. 189–192. [Online]. Available: https://doi.org/10.15439/2018F386
  • 15. A. Janusz, M. Przyborowski, P. Biczyk, and D. Ślęzak, “Network Device Workload Prediction: A Data Mining Challenge at Knowledge Pit,” in Proceedings of the 2020 Federated Conference on Computer Science and Information Systems, FedCSIS 2020, Sofia, Bulgaria, September 6-9, 2020, ser. Annals of Computer Science and Information Systems, M. Ganzha, L. A. Maciaszek, and M. Paprzycki, Eds., vol. 21, 2020, pp. 77–80. [Online]. Available: https://doi.org/10.15439/2020F159
  • 16. D. Ślęzak, M. Grzegorowski, A. Janusz, M. Kozielski, S. H. Nguyen, M. Sikora, S. Stawicki, and Ł. Wróbel, “A Framework for Learning and Embedding Multi-Sensor Forecasting Models into a Decision Support System: A Case Study of Methane Concentration in Coal Mines,” Information Sciences, vol. 451-452, pp. 112–133, 2018. [Online]. Available: https://doi.org/10.1016/j.ins.2018.04.026
  • 17. H.-M. Wong, X. Chen, H.-H. Tam, J. Lin, S. Zhang, S. Yan, X. Li, and K.-C. Wong, “Feature Selection and Feature Extraction: Highlights,” in 2021 5th International Conference on Intelligent Systems, Metaheuristics & Swarm Intelligence, ser. ISMSI 2021, New York, NY, USA, 2021, pp. 49–53. [Online]. Available: https://doi.org/10.1145/3461598.3461606
  • 18. T. Chen and C. Guestrin, “XGBoost: A Scalable Tree Boosting System,” in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ser. KDD ’16, New York, NY, USA, 2016, pp. 785–794. [Online]. Available: https://doi.org/10.1145/2939672.2939785
  • 19. G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T.-Y. Liu, “LightGBM: A Highly Efficient Gradient Boosting Decision Tree,” in Proceedings of the 31st International Conference on Neural Information Processing Systems, ser. NIPS’17, Red Hook, NY, USA, 2017, pp. 3149–3157.
  • 20. L. Prokhorenkova, G. Gusev, A. Vorobev, A. V. Dorogush, and A. Gulin, “CatBoost: Unbiased Boosting with Categorical Features,” in Proceedings of the 32nd International Conference on Neural Information Processing Systems, ser. NIPS’18, Red Hook, NY, USA, 2018, pp. 6639–6649.
Uwagi
1. Short article
2. Track 2: Data Mining Competiton
3. Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bdb1fc5c-fe0c-4208-a744-4c40b06b47c0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.