PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Review of nanoantennas application

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Przegląd zastosowań nanoanten
Języki publikacji
EN
Abstrakty
EN
Currently, nanoantennas represent significant potential for the future, and the scientific community is putting a lot of effort into developing these devices. Many publications deal with different types such as plasmonic, dielectric, or hybrid, and structures of nanoantennas such as dipole, Yagi-Uda, and others; therefore, the idea arose to create an article summarizing the possibilities of using these devices in the last five years. The paper focuses on a brief description of currently investigated types of antennas, especially in the scientific field, and lists the most common applications of nanoantennas.
PL
Obecnie nanoanteny mają znaczny potencjał na przyszłość, a społeczność naukowa wkłada wiele wysiłku w rozwój tych urządzeń. Wiele publikacji dotyczy różnych typów, takich jak plazmoniczne, dielektryczne lub hybrydowe, oraz struktur nanoanten, takich jak dipol, Yagi-Uda i inne; zrodził się więc pomysł stworzenia artykułu podsumowującego możliwości wykorzystania tych urządzeń w ciągu ostatnich pięciu lat. W artykule skupiono się na zwięzłej charakterystyce obecnie badanych rodzajów anten, zwłaszcza w obszarze naukowym, oraz wymieniono najczęstsze zastosowania anten nanoanteny.
Rocznik
Strony
13--17
Opis fizyczny
Bibliogr. 69 poz., rys., tab.
Twórcy
  • Faculty of Applied Informatics, Tomas Bata University in Zlin, Zlin, Czech Republic
  • Faculty of Applied Informatics, Tomas Bata University in Zlin, Zlin, Czech Republic
autor
  • Faculty of Applied Informatics, Tomas Bata University in Zlin, Zlin, Czech Republic
autor
  • Faculty of Applied Informatics, Tomas Bata University in Zlin, Zlin, Czech Republic
Bibliografia
  • 1 S. Kumar, S. Tanwar, and S. Sharma, “Nanoantenna–a review on present and future perspective,” Int. J. Sci. Eng. Technol.,vol. 4, p. 240, 2016.
  • 2. H. Elayan, O. Amin, R. M. Shubair, and M.-S. Alouini, “Terahertz communication: The opportunities of wireless technology beyond 5g,” in 2018 International Conference on Advanced Communication Technologies and Networking (CommNet). IEEE, 2018, pp. 1–5.
  • 3. S. Ghafoor, N. Boujnah, M. H. Rehmani, and A. Davy, “Mac protocols for terahertz communication: A comprehensive survey,” IEEE Communications Surveys & Tutorials, vol. 22, no. 4, pp. 2236–2282, 2020.
  • 4. Z. Chen, X. Ma, B. Zhang, Y. Zhang, Z. Niu, N. Kuang, W. Chen, L. Li, and S. Li, “A survey on terahertz communications,”China Communications, vol. 16, no. 2, pp. 1–35, 2019.
  • 5. Z. Ma, Z. Geng, Z. Fan, J. Liu, and H. Chen, “Modulators for terahertz communication: The current state of the art,” Research, vol. 2019, 2019.
  • 6. N. Thammawongsa, S. Mitatha, and P. P. Yupapin, “Optical spins and nano-antenna array for magnetic therapy,” IEEE transactions on nanobioscience, vol. 12, no. 3, pp. 228–232, 2013.
  • 7. I. S. Maksymov, “Magneto-plasmonic nanoantennas: basics and applications,” Reviews in Physics, vol. 1
  • 8, Z.-G. Wang, C. Song, and B. Ding, “Functional dna nanostructures for photonic and biomedical applications,” Small, vol. 9, no. 13, pp. 2210–2222, 2013.
  • 9. A. E. Krasnok, I. S. Maksymov, A. I. Denisyuk, P. A. Belov, A. E. Miroshnichenko, C. R. Simovski, and Y. S. Kivshar, “Optical nanoantennas,” Physics-Uspekhi, vol. 56, no. 6, p. 539, 2013.
  • 10. J. Zoran, M. Obradov, S. Vukovic, and M. Belic, “Plasmonic enhancement of light trapping in photodetectors,” Small, vol. 27, no. 2, pp. 183–203, 2014.
  • 11. A. Habib, X. Zhu, S. Fong, and A. A. Yanik, “Active plasmonic nanoantenna: an emerging toolbox from photonics to neuroscience,” Nanophotonics, vol. 9, no. 12, pp. 3805–3829
  • 12. P. Biagioni, J.-S. Huang, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Reports on Progress in Physics, vol. 75, no. 2, p. 024402, 2012.
  • 13. S. L. Kleinman, B. Sharma, M. G. Blaber, A.-I. Henry, N. Valley, R. G. Freeman, M. J. Natan, G. C. Schatz, and R. P. Van Duyne, “Structure enhancement factor relationships in single gold nanoantennas by surface-enhanced raman excitation spectroscopy,” Journal of the American Chemical Society, vol. 135, no. 1, pp. 301–308, 2013.
  • 14. D. Kuhness, A. Gruber, R. Winkler, J. Sattelkow, H. Fitzek, I. Letofsky-Papst, G. Kothleitner, and H. Plank, “High-fidelity 3dnanoprinting of plasmonic gold nanoantennas,” ACS Applied Materials & Interfaces, vol. 13, no. 1, pp. 1178–1191, 2020.
  • 15. K.-P. Chen, V. P. Drachev, J. D. Borneman, A. V. Kildishev, and V. M. Shalaev, “Drude relaxation rate in grained gold nanoantennas,” Nano letters, vol. 10, no. 3, pp. 916–922, 2010.
  • 16. X. Wang, C. Santschi, and O. J. Martin, “Strong improvement of long-term chemical and thermal stability of plasmonic silvernanoantennas and films,” Small, vol. 13, no. 28, p. 1700044, 2017.
  • 17. M. F. Klein, H. Hein, P.-J. Jakobs, S. Linden, N. Meinzer, M. Wegener, V. Saile, and M. Kohl, “Electron beam lithography of v-shaped silver nanoantennas,” Microelectronic engineering, vol. 86, no. 4-6, pp. 1078–1080, 2009.
  • 18. P. M. Voroshilov, V. Ovchinnikov, A. Papadimitratos, A. A. Zakhidov, and C. R. Simovski, “Light trapping enhancement by silver nanoantennas in organic solar cells,” ACS Photonics, vol. 5, no. 5, pp. 1767–1772, 2018.
  • 19. J. Martin, M. Kociak, Z. Mahfoud, J. Proust, D. Gerard, and J. Plain, “High-resolution imaging and spectroscopy of multipolar plasmonic resonances in aluminum nanoantennas,” Nano letters, vol. 14, no. 10, pp. 5517–5523, 2014.
  • 20. P. M. Schwab, C. Moosmann, M. D. Wissert, E. W.-G. Schmidt, K. S. Ilin, M. Siegel, U. Lemmer, and H.-J. Eisler, “Linear andnonlinear optical characterization of aluminum nanoantennas,” Nano letters, vol. 13, no. 4, pp. 1535–1540, 2013.
  • 21. M. W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum plasmonic nanoantennas,” Nano letters, vol. 12, no. 11, pp. 6000–6004, 2012.
  • 22. S. Bidault, M. Mivelle, and N. Bonod, “Dielectric nanoantennas to manipulate solid-state light emission,” Journal of Applied Physics, vol. 126, no. 9, p. 094104, 2019.
  • 23. M. R. Hasan and O. G. Helleso, “Dielectric optical nanoantennas,” Nanotechnology, vol. 32, no. 20, p. 202001, 2021.
  • 24. T. Zhang, J. Xu, Z.-L. Deng, D. Hu, F. Qin, and X. Li, “Unidirectional enhanced dipolar emission with an individual dielectric nanoantenna,” Nanomaterials, vol. 9, no. 4, p. 629, 2019.
  • 25. A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, and Y. S. Kivshar, “Huygens optical elements and yagi—uda nanoantennas based on dielectric nanoparticles,” JETP letters, vol. 94, no. 8, pp. 593–598, 2011.
  • 26. P. R. Wiecha, A. Arbouet, C. Girard, A. Lecestre, G. Larrieu, and V. Paillard, “Evolutionary multi-objective optimization of colour pixels based on dielectric nanoantennas,” Nature nanotechnology, vol. 12, no. 2, pp. 163–169, 2017.
  • 27. R. Paniagua-Dominguez, S. T. Ha, and A. I. Kuznetsov, “Active and tunable nanophotonics with dielectric nanoantennas,” Proceedings of the IEEE, vol. 108, no. 5, pp. 749–771, 2019.
  • 28. M. Peter, A. Hildebrandt, C. Schlickriede, K. Gharib, T. Zentgraf, J. Forstner, and S. Linden, “Directional emission from dielectric leaky-wave nanoantennas,” Nano letters, vol. 17, no.7, pp. 4178–4183, 2017.
  • 29. J. Ho, Y. H. Fu, Z. Dong, R. Paniagua-Dominguez, E. H. Koay, Y. F. Yu, V. Valuckas, A. I. Kuznetsov, and J. K. Yang, “Highlydirective hybrid metal–dielectric yagi-uda nanoantennas,” ACS nano, vol. 12, no. 8, pp. 8616–8624, 2018.
  • 30. A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, and Y. S.Kivshar, “All-dielectric optical nanoantennas,” Optics Express,vol. 20, no. 18, pp. 20 599–20 604, 2012.
  • 31. W. Rieger, J. J. Heremans, H. Ruan, Y. Kang, and R. Claus, “Yagi-uda nanoantenna enhanced metalsemiconductor- metal photodetector,” Applied Physics Letters, vol. 113, no. 2, p. 023102, 2018. [Online]. Available: https://doi.org/10.1063/1.5038339
  • 32. 1A. Pahuja, Parihar, M. . Kumar, and V.D., “Performance enhancement of thin‐film solar cell using yagi–uda nanoantenna array embedded inside the anti‐reflection coating.” Appl. Phys., vol. 126, no. 70, p. 023102, 2020. [Online]. Available: https://doi.org/10.1007/s00339‐019‐3250‐
  • 33. W. T. Sethi, O. De Sagazan, M. Himdi, H. Vettikalladi, and S. A. Alshebeili, “Thermoelectric sensor coupled yagi–uda nanoantenna for infrared detection,” Electronics, vol. 10, no. 5, 2021. [Online]. Available: https://www.mdpi.com/2079-9292/10/5/527
  • 34. N. Gupta and A. Dhawan, “Bowtie nanoantenna driven by a yagi-uda nanoantenna: a device for plasmonenhanced light matter interactions,” OSA Continuum, vol. 4, no. 11, pp. 2970–2979, Nov 2021. [Online]. Available: http://www.osapublishing.org/osac/abstract.cfm?URI=osac-4- 11-2970
  • 35. F. Helmy, M. Hussein, and M. e. a. Hameed, “Effect of yagi–uda nano-antenna element shape on the directivity and radiation efficiency.” Opt Quant Electron, vol. 51, no. 120, 2019. [Online]. Available: https://doi.org/10.1007/s11082-019-1774-3
  • 36. F. Helmy, M. Hussein, and M. e. a. Hameed, “Effect of yagi–uda nano-antenna element shape on the directivity and radiation efficiency.” Opt Quant Electron, vol. 51, no. 120, 2019. [Online]. Available: https://doi.org/10.1007/s11082-019-1774-3
  • 37. P. N. Santos, V. Dmitriev, K. Q. D. Costa, and D. Caratelli, “Optimization of modified yagi-uda nanoantenna arrays using adaptive fuzzy gapso.” International Journal of Antennas and Propagation, pp. 1–11, 2019. [Online]. Available: https://doi:10.1155/2021/8874385
  • 38. J. Ho, Y. H. Fu, Z. Dong, R. Paniagua-Dominguez, E. H. H. Koay, Y. F. Yu, V. Valuckas, A. I. Kuznetsov, and J. K. W. Yang, “Highly directive hybrid metal–dielectric yagi-uda nanoantennas,” ACS Nano, vol. 12, no. 8, pp. 8616–8624, 2018, pMID: 30048106. [Online]. Available: https://doi.org/10.1021/acsnano.8b04361
  • 39. K. Yao and Y. Zheng, “Controlling the polarization of chiral dipolar emission with a spherical dielectric nanoantenna,” The Journal of Chemical Physics, vol. 155, no. 22, p. 224110, 2021.[Online]. Available: https://doi.org/10.1063/5.0072210
  • 40. R. Paniagua-Dominguez, B. Luk’yanchuk, and A. I. Kuznetsov,“Control of scattering by isolated dielectric nanoantennas,” pp. 73–108, 2020.
  • 41. C. R. Simovski, M. S. M. Mollaei, and P. M. Voroshilov, “Fluorescence quenching by plasmonic nanoantennas,” Phys. Rev. B, vol. 101, p. 245421, Jun 2020. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevB.101.245421
  • 42. N. Li, Z. Xu, J. Zhang, and F. Jin, “Structural design of abroadband spiral nanoantenna for solar energy collection,” International Journal of Modern Physics B, vol. 34, no. 11, p. 2050122, 2020. [Online]. Available: https://doi.org/10.1142/S0217979220501222
  • 43. Y. Wang, Y. Lu, and P. Wang, “Nanoscale displacement sensing based on the interaction of a gaussian beam with dielectric nano-dimer antennas,” Opt. Express, vol. 26, no. 2, pp. 1000–1011, Jan 2018. [Online]. Available: http://www.osapublishing.org/oe/abstract.cfm?URI=oe- 26-2-1000
  • 44. N. M. Hameed and M. A. Al Lethawe, “Geometrical optimization study of diabolo nanoantenna,” Optik, vol. 201, p. 163534, 2020.
  • 45. L. Seitl, F. Laible, S. Dickreuter, D. A. Gollmer, D. P. Kern, and M. Fleischer, “Miniaturized fractal optical nanoantennas defined by focused helium ion beam milling,” Nanotechnology, vol. 31, no. 7, p. 075301, 2019.
  • 46. J. Song andW. Zhou, “Multiresonant composite optical nanoantennas by out-of-plane plasmonic engineering,” Nano letters, vol. 18, no. 7, pp. 4409–4416, 2018.
  • 47. J. Kim, N. Abbas, S. Lee, J. Yeom, M. A. Asgar, M. A. Badshah, X. Lu, Y. K. Kim, and S.-M. Kim, “Fabrication of a plasmonic nanoantenna array using metal deposition on polymernanoimprinted nanodots for an enhanced fluorescence substrate,” Polymers, vol. 13, no. 1, 2021. [Online]. Available: https://www.mdpi.com/2073-4360/13/1/48
  • 48. X. Zhuo, H. K. Yip, Q. Ruan, T. Zhang, X. Zhu, J. Wang, H.- Q. Lin, J.-B. Xu, and Z. Yang, “Broadside nanoantennas made of single silver nanorods,” ACS nano, vol. 12, no. 2, pp. 1720– 1731, 2018.
  • 49. S. Dey, D. Chatterjee, E. J. Garboczi, and A. M. Hassan, “Plasmonic nanoantenna optimization using characteristic mode analysis,” IEEE Transactions on Antennas and Propagation, vol. 68, no. 1, pp. 43–53, 2019.
  • 50. S. M. M. Moshiri and N. Nozhat, “Smart optical cross dipolenanoantenna with multibeam pattern,” Scientific Reports, vol. 11, no. 1, pp. 1–12, 2021.
  • 51. A. Alu and N. Engheta, “Theory, modeling and features of optical nanoantennas,” IEEE Transactions on Antennas and Propagation, vol. 61, no. 4, pp. 1508–1517, 2013.
  • 52. D. Franceschini, M. Donelli, R. Azaro, and A. Massa, “Future trends on nanoantennas synthesis,” in 2006 1st International Conference on Nano-Networks and Workshops. IEEE, 2006, pp. 1–5.
  • 53. I. S. Maksymov, I. Staude, A. E. Miroshnichenko, and Y. S. Kivshar, “Optical yagi-uda nanoantennas,” Nanophotonics, vol. 1, no. 1, pp. 65–81, 2012.
  • 54. S. Syrenova, C. Wadell, and C. Langhammer, “Shrinking-hole colloidal lithography: self-aligned nanofabrication of complex plasmonic nanoantennas,” Nano letters, vol. 14, no. 5, pp. 2655–2663, 2014.
  • 55. M. Rahmani, G. Leo, I. Brener, A. V. Zayats, S. A. Maier, C. De Angelis, H. Tan, V. F. Gili, F. Karouta, R. Oulton et al., “Nonlinear frequency conversion in optical nanoantennas and metasurfaces: materials evolution and fabrication,” Opto-Electronic Advances, vol. 1, no. 10, pp. 180 021–1, 2018.
  • 56. S. Law, L. Yu, A. Rosenberg, and D. Wasserman, “Allsemiconductor plasmonic nanoantennas for infrared sensing,” Nano letters, vol. 13, no. 9, pp. 4569–4574, 2013.
  • 57. C.-Y. Yang, J.-H. Yang, Z.-Y. Yang, Z.-X. Zhou, M.-G. Sun, V. E. Babicheva, and K.-P. Chen, “Nonradiating silicon nanoantenna metasurfaces as narrowband absorbers,” Acs Photonics, vol. 5, no. 7, pp. 2596–2601, 2018
  • 58. Z. Xu, W. Song, and K. B. Crozier, “Optical trapping of nanoparticles using all-silicon nanoantennas,” ACS Photonics, vol. 5, no. 12, pp. 4993–5001, 2018.
  • 59. A. Vaskin, J. Bohn, K. E. Chong, T. Bucher, M. Zilk, D.-Y. Choi, D. N. Neshev, Y. S. Kivshar, T. Pertsch, and I. Staude, “Directional and spectral shaping of light emission with mieresonant silicon nanoantenna arrays,” Acs Photonics, vol. 5, no. 4, pp. 1359–1364, 2018.
  • 60. A. J. Ollanik, J. A. Smith, M. J. Belue, and M. D. Escarra,“Highefficiency all-dielectric huygens metasurfaces from the ultraviolet to the infrared,” ACS photonics, vol. 5, no. 4, pp.1351–1358, 2018.
  • 61. Y. Chen, “Nanofabrication by electron beam lithography and its applications: A review,” Microelectronic Engineering, vol. 135,pp. 57–72, 2015.
  • 62. W. Yue, Z. Wang, Y. Yang, L. Chen, A. Syed, K. Wong, and X.Wang, “Electron-beam lithography of gold nanostructures for surface-enhanced raman scattering,” Journal of Micromechanics and Microengineering, vol. 22, no. 12, p. 125007, 2012.
  • 63. J. Ahn, S. Hong, Y.-S. Shim, and J. Park, “Electroplated functional materials with 3d nanostructures defined by advanced optical lithography and their emerging applications,” Applied Sciences, vol. 10, no. 24, p. 8780, 2020.
  • 64. L. J. Guo, “Nanoimprint lithography: methods and material requirements,” Advanced materials, vol. 19, no. 4, pp. 495–513, 2007.
  • 65. R. A. Marques Lameirinhas, J. P. N. Torres, and A. Baptista, “The influence of structure parameters on nanoantennas’ optical response,” Chemosensors, vol. 8, no. 2, 2020. [Online].Available: https://www.mdpi.com/2227-9040/8/2/42
  • 66. I.-J. Chen, S. Limpert, W. Metaferia, C. Thelander, L. Samuelson, F. Capasso, A. M. Burke, and H. Linke, “Hot-carrier extraction in nanowire-nanoantenna photovoltaic devices,” Nano Letters, vol. 20, no. 6, pp. 4064–4072, 2020, pMID: 32347731. [Online]. Available: https://doi.org/10.1021/acs.nanolett.9b04873
  • 67. J. Wei, Y. Li, Y. Chang, D. M. N. Hasan, B. Dong, Y. Ma, C.-W. Qiu, and C. Lee, “Ultrasensitive transmissive infrared spectroscopy via loss engineering of metallic nanoantennas for compact devices,” ACS Applied Materials & Interfaces, vol. 11, no. 50, pp. 47 270–47 278, 2019, pMID: 31769956. [Online]. Available: https://doi.org/10.1021/acsami.9b1800
  • 68. Y. U. Lee, G. B. M. Wisna, S.-W. Hsu, J. Zhao, M. Lei, S. Li, A. R. Tao, and Z. Liu, “Imaging of nanoscale light confinement in plasmonic nanoantennas by brownian optical microscopy,” ACS Nano, vol. 14, no. 6, pp. 7666–7672, 2020, pMID: 32438800.]. Available: https://doi.org/10.1021/acsnano.0c04019
  • 69. B. Chen, R. Bruck, D. Traviss, A. Z. Khokhar, S. Reynolds, D. J. Thomson, G. Z. Mashanovich, G. T. Reed, and O. L. Muskens, “Hybrid photon–plasmon coupling and ultrafast control of nanoantennas on a silicon photonic chip,” Nano Letters, vol. 18, no. 1, pp. 610–617, 2018, pMID: 29272140. [Online]. Available: https://doi.org/10.1021/acs.nanolett.7b04861
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bda7e822-3942-4a11-8c47-889706ec27e0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.