PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Confronting theoretical predictions with experimental data; A fitting strategy for multi-dimensional distributions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
After developing a Resonance Chiral Lagrangian (R χ L) model to describe hadronic τ lepton decays, the model was confronted with experimental data. This was accomplished by using a fitting framework that was developed to take into account the complexity of the model and to ensure numerical stability for the algorithms used in the fitting. Since the model used in the fit contained 15 parameters and there were only three one-dimensional distributions available, we could expect multiple local minima or even whole regions of equal potential to appear. Our methods had to thoroughly explore the whole parameter space and ensure (as well as possible) that the result is a global minimum. This paper is focused on the technical aspects of the fitting strategy used. The first approach was based on a re-weighting algorithm published in article Shekhovtsova et al. and produced results in about two weeks. A later approach, with an improved theoretical model and a simple parallelization algorithm based on Inter-Process Communication (IPC) methods of UNIX system, reduced computation time down to 2–3 days. Additional approximations were introduced to the model, decreasing the necessary time to obtain the preliminary results down to 8 hours. This allowed us to better validate the results, leading to a more robust analysis published in article Nugent et al.
Wydawca
Czasopismo
Rocznik
Strony
17--38
Opis fizyczny
Bibliogr. 20 poz., rys., wykr., tab.
Twórcy
  • The Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Krakow, Poland
autor
  • Departamento de Fisica, Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional, Apartado Postal 14-740, 07000 Mexico D. F. 01000, Mexico
  • Kharkov Institute of Physics and Technology 61.108, Akademicheskaya, I, Kharkov, Ukraine
  • Institute of Nuclear Physics, PAN, Krakow, Poland
autor
  • Institute of Nuclear Physics, PAN, Krakow, Poland
autor
  • Institute of Nuclear Physics, PAN, Krakow, Poland
Bibliografia
  • [1] Actis S., et al.: Quest for precision in hadronic cross sections at low energy: Monte Carlo tools vs. experimental data. Eur. Phys. J. , vol. C66, pp. 585–686, 2010. http://dx.doi.org/10.1140/epjc/s10052-010-1251-4
  • [2] Antcheva I., Ballintijn M., Bellenot B., Biskup M., Brun R., et al.: ROOT: A C++ ramework for petabyte data storage, statistical analysis and visualization. Comput. Phys. Commun., vol. 180, pp. 2499–2512, 2009. http://dx.doi.org/10.1016/j.cpc.2009.08.005
  • [3] Asner D., et al.: Hadronic structure in the decay τ and the sign of the tau-neutrino helicity. Phys. Rev., vol. D61, p. 012002, 2000. http://dx.doi.org/10.1016/j.cpc.2009.08.005
  • [4] Aubert B., et al.: The BaBar detector. Nucl. Instrum. Meth., vol. A479, pp. 1–116, 2002. http://dx.doi.org/10.1016/S0168-9002(01)02012-5
  • [5] Banerjee S., Kalinowski J., Kotlarski W., Przedzinski T., Was Z.: Ascertaining the spin for new resonances decaying into tau+ tau- at Hadron Colliders. Eur. Phys. J., vol. C73, p. 2313, 2013. http://dx.doi.org/10.1140/epjc/s10052-013-2313-1.
  • [6] Ecker G., Gasser J., Pich A., de Rafael E.: The Role of Resonances in Chiral Perturbation Theory. Nucl. Phys., vol. B321, p. 311, 1989. http://dx.doi.org/10.1016/0550-3213(89)90346-5.
  • [7] Jadach S., Kuhn J. H., Was Z.: TAUOLA: A Library of Monte Carlo programs to simulate decays of polarized tau leptons. Comput. Phys. Commun., vol. 64, pp. 275–299, 1990. http://dx.doi.org/10.1016/0010-4655(91)90038-M.
  • [8] James F., Roos M.: Minuit: A System for Function Minimization and Analysis of the Parameter Errors and Correlations. Comput. Phys. Commun., vol. 10, pp. 343–367, 1975. http://dx.doi.org/10.1016/0010-4655(75)90039-9.
  • [9] Kubota Y., et al.: The CLEO-II detector. Nucl. Instrum. Meth., vol. A320, pp. 66–113, 1992. http://dx.doi.org/10.1016/0168-9002(92)90770-5.
  • [10] Nugent I., Przedzinski T., Roig P., Shekhovtsova O., Was Z.: Resonance chiral Lagrangian currents and experimental data for Phys. Rev., vol. D88(9), p. 093012, 2013. http://dx.doi.org/10.1103/PhysRevD.88.093012.
  • [11] Nugent I. M. [BaBar Collaboration]: Invariant mass spectra of decays, Nucl. Phys. Proc. Suppl. 253–255, 38 (2014) [arXiv:1301.7105 [hep-ex]].
  • [12] Olive K., et al.: Review of Particle Physics. Chin. Phys., vol. C38, p. 090001, 2014. http://dx.doi.org/10.1088/1674-1137/38/9/090001.
  • [13] Pich A.: Precision Tau Physics. Prog. Part. Nucl. Phys., vol. 75, pp. 41–85, 2014. http://dx.doi.org/10.1016/j.ppnp.2013.11.002.
  • [14] Przedzinski T.: Test of influence of retabulation method on fitting convergence, 2011.
  • [15] Shekhovtsova O., Nugent I., Przedzinski T., Roig P., Was Z.: RChL currents in Tauola: implementation and fit parameters. Nucl. Phys. Proc. Suppl., 253–255, pp. 73–76, 2014. UAB-FT-727 http://dx.doi.org/10.1016/j.nuclphysbps.2014.09.018
  • [16] Shekhovtsova O., Przedzinski T., Roig P., Was Z.: Resonance chiral Lagrangian currents and τ decay Monte Carlo. Phys. Rev., vol. D86, p. 113008, 2012. http://dx.doi.org/10.1103/PhysRevD.86.113008.
  • [17] ’t Hooft G.: A Planar Diagram Theory for Strong Interactions. Nucl. Phys., vol. B72, p. 461, 1974. http://dx.doi.org/10.1016/0550-3213(74)90154-0.
  • [18] Verkerke W., Kirkby D. P.: The RooFit toolkit for data modeling. eConf, vol. C0303241, p. MOLT007, 2003.
  • [19] Witten E.: Baryons in the 1/n Expansion. Nucl. Phys., vol. B160, p. 57, 1979. http://dx.doi.org/10.1016/0550-3213(79)90232-3.
  • [20] World LHC Computing Grid
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bda775d0-0ef6-4bd3-831c-c8c68f18b04e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.