Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Errors in the calculation of the parameters of quadcopter control models at design stage significantly change the desired aerodynamic properties of the drone and make it difficult to control its flight along the intended path. Therefore, to calculate the adequate operation modes of the blades, it becomes necessary to refine some parameters of the mathematical model of the drone as accurately as possible. This paper shows the possibility of using control parameters (rotational speed of the blades) and information received from navigation devices of the drone to refine the values of the parameters of the mathematical model of the drone. For this purpose, a mathematical model of a quadcopter is built, and the problem of refining the parameters of its dynamic model is investigated based on the information received from navigation devices and the control parameters in the initial period of its flight. From the results obtained from several consecutive measurements, a system of equations expressing a mathematical model is solved. The mean value of the corresponding solutions of the system of three-dimensional linear equations obtained at different time intervals is the refined value of the parameters.
Rocznik
Tom
Strony
141--151
Opis fizyczny
Bibliogr. 10 poz.
Twórcy
autor
- Institute of Control Systems of Azerbaijan National Academy of Sciences, 9, B.Vahabzade St., Baku-AZ1141, Azerbaijan
autor
- Institute of Control Systems of Azerbaijan National Academy of Sciences, 9, B.Vahabzade St., Baku-AZ1141, Azerbaijan
Bibliografia
- 1. Hoffmann Gabriel M., Haomiao Huang, Steven L. Waslander, Claire J. Tomlin. "Quadrotor Helicopter Flight Dynamics and Control: Theory and Experiment". AIAA Guidance, Navigation and Control Conference and Exhibit. 20-23 August 2007, Hilton Head, South Carolina. 20 P.
- 2. Teppo Luukkonen. "Modelling and Control of Quadcopter". School of Science, Espoo. August 22, 2011. P. 26.
- 3. Marcelo De Lellis Costa de Oliveira. "Modeling, Identification and Control of a Quadrotor Aircraft" Czech Technical University in Prague. Master’s Thesis. Prague. June 2011. 75 P.
- 4. Гурьянов А.Е. 2014. "Моделирование управления квадрокоптером". Инженерный вестник 8: 523-534. [In Russian: Guryanov A.Y. 2014. "Quadcopter control modeling". Inzhenerniy Vestnik 8: 522-534].
- 5. Гэн К., Н.А. Чулин. "Алгоритмы стаблизации для автоматического управления траекторным движением квадрокоптера". 2015. Наука и Образование. МГТУ им.Н.Э.Баумана. Электронный журнал. 5: 218-235. [In Russian: Gen K., N.A. Chulin. 2015. "Stabilization algorithms for automatic control of the quadcopter trajectory movement". Nauka i Obrazovaniye. N.E. Bauman MSTU. Electronic journal 5: 218-235].
- 6. MPU-9250 Nine-Axis (Gyro + Accelerometer + Compass) MEMS MotionTracking™
- Device. Available at: https://invensense.tdk.com/products/motion-tracking/9-axis/mpu-9250/.
- 7. Ефимов В.В. "Основы авиации. Часть I. Основы аэродинамики и динамики полета летательных аппаратов". Москва: МГТУ ГА, 2003. [In Russian: Yefimov V.V. "The basics of aviation. Part I. Fundamentals of aerodynamics and flight dynamics of aircraft". Moscow: MSTU GA, 2003].
- 8. "Динамика летательных аппаратов в атмосфере. Термины, определения и обозначения". ГОСТ 20058-80. Москва. 1980. 52 С. [In Russian: "Dynamics of aerial vehicles in the atmosphere. Terms, definitions and designations". GOST 20058-80. Moscow. 1980. 52 P.].
- 9. Бухгольц Н.Н. "Основной курс теоретической механики". Ч.1. М.: Наука. 1965. 468 С. [In Russian: Buchholz N.N. "The basic course theoretical mechanics". Part 1. M.: Nauka. 1965. 468 P.].
- 10. Бедржицкий Е.Л., Б.С. Дубов, А.Н. Радциг. "Теория и практика аэродинамического эксперимента". М.: МАИ. 1990. 216 с. ISBN: 5-7035-0003-6. [In Russian: Bedrzhitsky E.L., B.S. Dubov, A.N. Radtsig. "Theory and practice of aerodynamic experiments". M.: MAI. 1990. 216 P. ISBN: 5-7035-0003-6].
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bda6da3d-156e-4d9b-a43c-f75e2da80245