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REFINEMENT OF THE PARAMETERS OF A MATHEMATICAL 

MODEL OF QUADCOPTER DYNAMICS 
 

Summary. Errors in the calculation of the parameters of quadcopter control 

models at design stage significantly change the desired aerodynamic properties of 

the drone and make it difficult to control its flight along the intended path. 

Therefore, to calculate the adequate operation modes of the blades, it becomes 

necessary to refine some parameters of the mathematical model of the drone as 

accurately as possible. This paper shows the possibility of using control parameters 

(rotational speed of the blades) and information received from navigation devices 

of the drone to refine the values of the parameters of the mathematical model of 

the drone. For this purpose, a mathematical model of a quadcopter is built, and 

the problem of refining the parameters of its dynamic model is investigated based 

on the information received from navigation devices and the control parameters in 

the initial period of its flight. From the results obtained from several consecutive 

measurements, a system of equations expressing a mathematical model is solved. 

The mean value of the corresponding solutions of the system of three-dimensional 

linear equations obtained at different time intervals is the refined value of 

the parameters. 
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1. INTRODUCTION 

 

The low cost of unmanned aerial vehicles (drones) has given impetus to their widespread 

use for military purposes. The possibility of equipping them with appropriate hardware makes 

it possible for them to perform various tasks. Quadcopters should be mentioned among such 

currently widely used vehicles. As a rule, quadcopters are equipped with navigation devices 

(gyroscope, accelerometer, etc.), which allow obtaining information related to the drone’s 

location and aerial orientation and control its flight. 

Dynamic mathematical models describe the control and movement of the quadcopter. In this 

study, the drone is considered as a solid, and its mathematical model expresses the relationship 

between the thrust generated by the motor and acceleration, air drag, torque, rotational speed 

and velocity of the drone relative to the earth. There is a wide range of studies dealing with the 

dynamic modelling of drones. For instance, [1] is devoted to the building of a mathematical 

model of a drone to solve the problem of eliminating its deviation from the intended flight path. 

In [2], a mathematical model was built to control the stability and flight path of a quadcopter. 

In the paper, feedback data related to the orientation of the drone is given in the form of Euler 

angles. In the mathematical model built in [3], the aerodynamic forces acting on the drone are 

not considered, and the case of its flight at low speeds was studied. In [4], a mathematical model 

that defines the spatial position of the quadcopter by Euler angles was developed and used to 

create a flight simulation program. In [5], a mathematical model was developed, the 

quadcopter’s spatial position being expressed by Euler angles, and a controller stabilising the 

altitude and orientation of the drone was developed based on this model. 

Several currently designed drone models provide for the use of MPU-9250 type devices [6]. 

Since this device does not measure Euler angles, it is impossible to directly apply the results of 

the above studies to solving problems of quadcopter control when using it. Thus, the 

accelerometer and gyroscope of MPU-9250 allow calculating the loads that occur during 

movement, as well as the rate of change of Krylov rotation angles (roll, pitch and yaw) [7, P.9], 

which determine the spatial position of the drone, and current orientation angles by integrating 

these speeds. 

A mathematical model of the quadcopter control problem is built in this paper based on 

feedback data received from an MPU-9250 type device. The rotational speeds of the quadcopter 

blades are used as control parameters. It is assumed that: 

 the drone has 4 symmetrically fixed identical motors that rotate its blades; 

 for clarity, if we indicate the drone motors as shown in Fig. 1, blades 1 and 3 rotate 

clockwise, and blades 2 and 4 counterclockwise; 

 due to the small angular rotational velocities, the gyroscopic forces created by the 

movement of the drone can be neglected; 

 gravity and aerodynamic drag affect the centre of mass of the drone, so these forces do 

not create a torque; 

 the mass of the drone is distributed only along its arms, in other words, the drone's rotary 

inertia matrix has a diagonal shape. 
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The dynamic model of a quadcopter is expressed by numerous parameters. These parameters 

are usually calculated using empirical formulas at the drone design stage. Stable drone control 

requires these parameters to be known as accurately as possible.  

 

 
 

Fig. 1. Quadcopter schematic 

 

Therefore, this paper explores the possibility of using the control parameters (rotational 

speed of the blades) and the data obtained from navigation devices of the drone to refine the 

values of the parameters of the mathematical model of the drone. 

 

 

2. MATHEMATICAL MODEL OF THE DRONE 

 

To determine the position of the quadcopter relative to the ground and build a dynamic 

model, a fixed-in-the-earth right-handed normal gggg zyxO  coordinate system is used. For 

clarity, it is assumed that the gg zO  axis is directed vertically upward in the considered point, 

and the gg xO  and gg yO  axes are directed so that the ggg zxO  plane is perpendicular to gg zO

, forming a right-handed coordinate system. 

We denote by )(tS gx , )(tS gy , )(tSgz  the quadcopter’s current coordinates relative to the 

gggg zyxO  system at the considered instant t , and the components of the velocity vector by 

)(tvgx , )(tvgy , )(tvgz . It is obvious that, 
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The mathematical model of drone control provides for setting such a relationship between 

the flight path  )(),(),( tStStS gzgygx  expressed by the coordinates in the gggg zyxO  system 

and the angular rotational velocities of the blades 43121 ,,,   that the following two 

problems can be solved: 

 the calculation of the drone’s flight path  )(),(),( tStStS gzgygx  according to the angular 

rotational velocities 43121 ,,,  ; 
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 the calculation of the angular rotational velocities 
43121 ,,,   for the execution of 

the given flight path  )(),(),( tStStS gzgygx . 

 

To specify the physical (inertial) characteristics of the quadcopter, we introduce a 

rectangular right-handed Oxyz  coordinate system fixed to it [7, P.23]. The quadcopter can be 

described schematically as shown in Fig. 1. Suppose that the origin of coordinates is located in 

the centre of the drone, the Ox  and Oy  axes are directed along its “arms”, and the Oz  axis is 

directed upward perpendicular to the Oxy  plane.  

As mentioned above, when designing a drone control system, MPU-9250 type devices are 

used to provide feedback [6]. These devices allow expressing the spatial position (orientation) 

of the drone by the yaw angle )(t , the pitch angle )(t , the roll angle )(t . The definition of 

yaw, pitch and roll angles is given in [7, P.9]. These angles virtually indicate the spatial position 

of the Oxyz  coordinate system fixed to the drone relative to the normal gggg zyxO  coordinate 

system. Matrix (2) can be used to find in the Oxyz  coordinate system the components of the 

vector given in the fixed-in-the-earth gggg zyxO  coordinate system. For simplicity, for the 

angle   under consideration, S  and C  are written instead of sin  and cos  from here next. 
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To build the drone control model, we write the equations of its movement relative to the 

Oxyz  coordinate system [9, P.128]: 

 Fvw
v











dt

d
m , (3) 

   MJwwJε  , (4) 

where m  is the mass of the drone, J  is the rotary inertia matrix,  )(),(),( tvtvtv zyxv  is the 

velocity of the drone,  )(),(),( twtwtw zyxw  is the angular rotational velocity of the drone, 

F  is the sum of the forces acting on the drone, M  is the moment created by the forces acting 

on the drone. Equation (3) expresses the balance of forces, and equation (4) expresses the 

balance of moments. The relationship between the velocities gv  and v  is determined by the 

following equality: 

 vw
vv


dt

d

dt

d g
. (5) 

 

The position of the drone relative to the gggg zyxO  coordinate system can be identified with 

the position of the Oxyz  coordinate system relative to gggg zyxO . Taking this into account, 

the angular velocity w  and the angular acceleration ε  of the drone relative to gggg zyxO  can 

be calculated as follows:  
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Let us give the procedure of calculation of the vectors F  and M  on the right-hand side of 

the system of equations (3)-(4). 

Following the above conditions for the direction of rotation of the drone’s blades, the 

propelling force created by its motors is always oriented in the direction of the Oz  axis of the 

fixed Oxyz  coordinate system: 
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jk F , (7) 

where k  is a coefficient determined experimentally, j  is the rotational speed of the blades of 

the j -th motor. Here and thereafter, the asterisk indicates the transposition operation. 

 

The aerodynamic drag is directed opposite to the movement of the drone:  

 vvF aa C , (8) 

where aC  is the drag coefficient, which is proportional to the area of the projected plane 

perpendicular to the direction of the drone’s movement and depends on its aerodynamic shape. 

In the general case, the relationship between the coefficient aC  and the aerodynamic shape is 

very complex and depending on the direction of movement for the drone under consideration, 

its value can be determined experimentally [10]. Usually, for simplicity, this coefficient is 

assumed to be identical in all directions. Therefore, the force aF  can be broken into the 

following components: 

  *222 )(),(),()()()( tvtvtvtvtvtvC zyxzyxaa F . (9) 

 

Regardless of the spatial position, gravity acting on the drone is always directed vertically 

to the earth. Using the transformation matrix (1), we can obtain the following formula for 

expressing gravity relative to the Oxyz  coordinate system: 

  *,0,0 gp  AF . (10) 

 

As mentioned above, it is assumed that gravity and aerodynamic drag affect the centre of 

mass of the drone, so these forces do not create a torque. Since the drone's motors are fixed to 

it, the torque generated by the rotation of the blades can be expressed in the Oxyz  coordinate 

system as follows: 
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where l  is the length of the arms of the drone, and b  is a coefficient determined experimentally. 
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Also, according to the condition that the drone rotary inertia matrix has a diagonal shape, it 

can be written as the following diagonal matrix: 
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According to equality (6) 
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If we write the values in equations (3)-(4) in terms of components, we can obtain the 

following system of differential equations for the dynamic model of the drone: 
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Based on equations (4), we can write equations expressing the components of the drone’s 

velocity vector relative to the earth: 
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To solve system (1), (6)-(16) by the functions )(),(),( tStStS gzgygx , )(),(),( ttt  , their 

initial values for a certain moment 0tt   must be given: 
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System (1), (6)-(20), being a Cauchy problem written for a system of ordinary differential 

equations, expresses the dynamic model of a drone. 

 

 

3. STATEMENT OF THE PROBLEM OF PARAMETER REFINEMENT 

(IDENTIFICATION) 

 

Depending on the tasks performed, devices connected to the quadcopter (photo and video 

camera, radio repeater, packages of various shapes, etc.) can to some extent change their 

aerodynamic and technical characteristics. In this regard, the values of some parameters of the 

mathematical model of a quadcopter can differ from the calculated indicators. 

The dynamic model of a quadcopter is expressed by several parameters, including the total 

mass of the drone, the components of the moment of inertia, the coefficient of proportionality 

between the rotational speed of the blades and the lifting force that they create, and other 

quantities. These values, in turn, depend on the size of the drone, the mass of its parts, the 

distribution of these parts relative to the centre of gravity and other factors. They can be 

determined experimentally or calculated analytically in the framework of hypotheses put 

forward in building the mathematical model. However, the errors in finding these parameters 

significantly change the aerodynamic properties of the drone, which makes it difficult to control 

its flight along the intended path. 

The change in aerodynamic properties is reflected in the fact that the rotation of the blades 

in design modes is not enough for the drone to move along the intended path, and these modes 

need to be altered. In essence, it is necessary to refine some parameters of the mathematical 

model of the drone as accurately as possible to calculate adequate modes of operation of the 

blades. Mathematically, this is considered an inverse problem. Thus, the possibility of using the 

control parameters (rotational speed of the blades) and the data from navigation devices of the 

drone to refine the values of the parameters of the mathematical model of the drone is 

investigated in the following paragraphs. 

An analysis of the dynamic model of a quadcopter written in the form of system (1), (6)-(20) 

above shows that the quantities in the model are divided into three groups. 

The first group includes control parameters 43121 ,,,   adjusted by the operator 

controlling the drone. 
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The second group includes the quantities calculated based on the loads zyx nnn ,,  measured 

by navigation devices and the derivatives of Krylov orientation angles  ,, . 

The application of the operations xx gnv  ,  dtgnv xx , yy gnv  ,  dtgnv yy , zz gnv  , 

 dtgnv zz , )(   ,   ,  dt , )(   ,   ,  dt , 

)(   ,   ,  dt  allows calculating all the other quantities included in the 

mathematical model. 

The third group includes the quantities bkCJJJml azzyyxx ,,,,,,, , which describe the 

physical and technical characteristics of the quadcopter and are considered unchangeable 

(constant) throughout the flight. Note the following two considerations concerning these 

variables. 

I. Since the asymmetric design of the quadcopter substantially disrupts the stability of its 

flight, serious attention is paid to this issue, and from this point of view, we can assume with 

great accuracy that yyxx JJ  . 

II. Equations (8) that determine the quadcopter’s orientation are invariant concerning the 

relations 
l

J

l

J

l

J zzyyxx ,   and 
l

b
. 

With these considerations in mind, refining the values of the parameters of the dynamic 

model of a quadcopter implies finding the quantities ,,,
l

J

l

J

l

J
m zzyyxx 

l

b
kCa ,,  with 

sufficient accuracy. The initial approximate values of these quantities are assumed to be known 

and to solve the problem of parameter refinement, one can conduct flight experiments, adjusting 

the control parameters, and use measurements of navigation devices. 

 

 

4. SOLUTION OF THE PROBLEM 

 

Data coming from navigation devices is calculated at discrete instants in time, and the 

controller processor spends a certain amount of time on these calculations. In this regard, in the 

practical solution of the theoretical continuous mathematical model from the previous sections, 

a discrete analogue must be written. 

Data received from navigation devices can be attributed with sufficiently high accuracy to 

the same time instants titi  , where t  is a time discrete, a known quantity, ...,2,1,0i . 

To calculate the refined value of the constants in the mathematical model, we can consider the 

time instants riii ...,,, 21 , which differ from each other by the control parameters of the identical 

flight, where 3r  is a natural number. 

First, let us give the calculation procedure for the quantities kCm a ,, . If we group system 

(14) according to the sought-for quantities and replace the coefficients with finite differences 

for each considered riiii ...,,, 21 , we get: 
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For each time instant it  
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The index i  below indicates that the bracketed expression should be written as finite 

differences at the considered point it . It should be noted that due to errors in the measurements 

of the navigation devices, system (22) can degenerate at some values of i . Except in cases of 

degeneracy, the mean value of the solutions found for different 𝑖 can be taken as the refined 

value of the quantities kCm a ,, . 

Further, we consider the problem of calculating the relations 
l

J

l

J

l

J zzyyxx ,  and 
l

b
 using 

the found coefficient k . If we express the second-order derivatives of orientation angles in 

equations (15) by the quantities  ,,  and rewrite them for the relations  ,, , we 

obtain: 
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 (23) 

or for every moment it : 
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where 

 
izyi wwSCSb  )()(11   ,  

izyi wwb 12 ,  
izxi wwSSCb  )()(21  

,  
izxi wwb 22 ,  

ii Cb )()(32
   ,  

iib 2
4

2
3

2
2

2
133   ,  

ii kb 2
4

2
214   , 

 
ii kb 2

3
2
124   . 

 

It should also be noted that due to errors in the measurements of navigation devices, system 

(24) can degenerate for some values of i . Except in cases of degeneracy, the mean value of the 

solutions found for different i  can be taken as the refined value of the relations 
l

J

l

J

l

J zzyyxx ,  

and 
l

b
. 

 

 

5. CONCLUSION 

 

The dynamic model of a quadcopter is built in this paper, using the rotational speeds of the 

blades of the quadcopter motors, which are the control parameters, the loads measured by the 

accelerometer and the Krylov angles (yaw, pitch and roll angles) measured by the gyroscopes, 

which are the feedback data. The group of invariant quantities that are part of the mathematical 

model of the drone defining the dynamics of its movement is determined, and the possibility of 

determining their values as a result of flight experiments is substantiated. 

 

 

References 

 

1. Hoffmann Gabriel M., Haomiao Huang, Steven L. Waslander, Claire J. Tomlin. 

"Quadrotor Helicopter Flight Dynamics and Control: Theory and Experiment". 

AIAA Guidance, Navigation and Control Conference and Exhibit. 20-23 August 2007, 

Hilton Head, South Carolina. 20 P.  

2. Teppo Luukkonen. "Modelling and Control of Quadcopter". School of Science, Espoo. 

August 22, 2011. P. 26. 

3. Marcelo De Lellis Costa de Oliveira. "Modeling, Identification and Control of a 

Quadrotor Aircraft" Czech Technical University in Prague. Master’s Thesis. Prague. 

June 2011. 75 P. 

4. Гурьянов А.Е. 2014. "Моделирование управления квадрокоптером". Инженерный 

вестник 8: 523-534. [In Russian: Guryanov A.Y. 2014. "Quadcopter control modeling". 

Inzhenerniy Vestnik 8: 522-534]. 

5. Гэн К., Н.А. Чулин. "Алгоритмы стаблизации для автоматического управления 

траекторным движением квадрокоптера". 2015. Наука и Образование. МГТУ 

им.Н.Э.Баумана. Электронный журнал. 5: 218-235. [In Russian: Gen K., N.A. Chulin. 

2015. "Stabilization algorithms for automatic control of the quadcopter trajectory 

movement". Nauka i Obrazovaniye. N.E. Bauman MSTU. Electronic journal 5: 218-235]. 

6. MPU-9250 Nine-Axis (Gyro + Accelerometer + Compass) MEMS MotionTracking™ 

Device. Available at: https://invensense.tdk.com/products/motion-tracking/9-axis/mpu-

9250/. 



Refinement of the parameters of a mathematical model of quadcopter dynamics 151. 

 

7. Ефимов В.В. "Основы авиации. Часть I. Основы аэродинамики и динамики полета 

летательных аппаратов". Москва: МГТУ ГА, 2003. [In Russian: Yefimov V.V. 

"The basics of aviation. Part I. Fundamentals of aerodynamics and flight dynamics of 

aircraft". Moscow: MSTU GA, 2003]. 

8. "Динамика летательных аппаратов в атмосфере. Термины, определения и 

обозначения". ГОСТ 20058-80. Москва. 1980. 52 С. [In Russian: "Dynamics of aerial 

vehicles in the atmosphere. Terms, definitions and designations". GOST 20058-80. 

Moscow. 1980. 52 P.]. 

9. Бухгольц Н.Н. "Основной курс теоретической механики". Ч.1. М.: Наука. 1965. 

468 С. [In Russian: Buchholz N.N. "The basic course theoretical mechanics". Part 1. 

M.: Nauka. 1965. 468 P.]. 

10. Бедржицкий Е.Л., Б.С. Дубов, А.Н. Радциг. "Теория и практика аэродинамического 

эксперимента". М.: МАИ. 1990. 216 с. ISBN: 5-7035-0003-6. [In Russian: Bedrzhitsky 

E.L., B.S. Dubov, A.N. Radtsig. "Theory and practice of aerodynamic experiments". 

M.: MAI. 1990. 216 P. ISBN: 5-7035-0003-6]. 

 

 

Received 11.07.2020; accepted in revised form 28.10.2020 

 

 

 
Scientific Journal of Silesian University of Technology. Series Transport is licensed under 

a Creative Commons Attribution 4.0 International License 


