PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Measurements of low frequency noise of infrared photo-detectors with transimpedance detection system

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the method and results of low-frequency noise measurements of modern mid-wavelength infrared photodetectors. A type-II InAs/GaSb superlattice based detector with nBn barrier architecture is compared with a high operating temperature (HOT) heterojunction HgCdTe detector. All experiments were made in the range 1 Hz - 10 kHz at various temperatures by using a transimpedance detection system, which is examined in detail. The power spectral density of the nBn’s dark current noise includes Lorentzians with different time constants while the HgCdTe photodiode has more uniform 1/f - shaped spectra. For small bias, the low-frequency noise power spectra of both devices were found to scale linearly with bias voltage squared and were connected with the fluctuations of the leakage resistance. Leakage resistance noise defines the lower noise limit of a photodetector. Other dark current components give raise to the increase of low-frequency noise above this limit. For the same voltage biasing devices, the absolute noise power densities at 1 Hz in nBn are 1 to 2 orders of magnitude lower than in a MCT HgCdTe detector. In spite of this, low-frequency performance of the HgCdTe detector at ~ 230K is still better than that of InAs/GaSb superlattice nBn detector.
Rocznik
Strony
461--472
Opis fizyczny
Bibliogr. 17 poz., rys., wykr., wzory
Twórcy
autor
  • Rzeszów University of Technology, Department of Electronic Fundamentals, al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland (669212770)
autor
  • Rzeszów University of Technology, Department of Electronic Fundamentals, al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland
autor
  • Institute of Applied Physics, Military University of Technology, 2 Kaliskiego St., 00-908 Warsaw, Poland (+48 22 6839673)
  • Institute of Applied Physics, Military University of Technology, 2 Kaliskiego St., 00-908 Warsaw, Poland
autor
  • Vigo System S.A., 129/133 Poznańska Str., 05-850 Ożarów Mazowiecki, Poland (+48 22 6839673)
Bibliografia
  • [1] Martyniuk, P., Wróbel, J., Plis, E., Madejczyk, P., Kowalewski, A., Gawron, W., Krishna, S., Rogalski, A. (2012). Performance modeling of MWIR InAs/GaSb/B-Al02Gao8Sb type-II superlattice nBn detector. Semicond. Sci. Technol., vol. 27, 055002.
  • [2] Cowan, V. M., Morath, C. P., Myers, S., Gautam, N., Krishna, S. (2011). Low temperature noise measurement of an InAs/GaSb-based nBn MWIR detector. Infrared Technology and Applications, vol. 8012, 801210.
  • [3] Wörl, A., Kleinow, P., Rehm, R., Schmitz, J., Walther, M. (2013). Noise characteristics of InAs/GaSb superlattice infrared photodiodes. Phys. Status Solidi C, 10, 744-747.
  • [4] Kim, H. S., Plis, E., Gautam, N., Myers, S., Sharma, Y., Dawson, L. R., Krishna, S. (2010). Reduction of surface leakage current in InAs/GaSb strained layer longwavelength superlattice detectors using SU-8 passivation. Appl. Phys. Lett., 97, 143512.
  • [5] Rodriguez, J. B., Plis E., Bishop G., Sharma Y. D., Kim H., Dawson L. R., Krishna, S. (2007). nBn structure based on InAs/GaSb type-II strained layer superlattices. Appl. Phys. Lett., 91, 043514.
  • [6] Gopal, V., Plis, E., Rodriguez, J.-B., Jones, C. E., Faraone, L., Krishna, S. (2008). Modeling of electrical characteristics of midwave type II InAs/GaSb strain layer superlattice diodes. Journal of Applied Physics, 104, 124506.
  • [7] Piotrowski, J., Piotrowski, A. (2011). Room temperature photodetectors. Mercury Cadmium Telluride: Growth, Properties and Applications edited by Capper P. and James Garland, Willey, 513-537.
  • [8] Soibel, A., Nguyen, J., Höglund, L., Hill, C. J., Ting, D. Z., Keo, S. A., Mumolo, J. M., Lee, M. C., Gunapala, S. D. (2011). InAs/GaSb superlattice based long-wavelength infrared detectors: Growth, processing, and characterization. Infrared Physics & Technology, 54, 247-251.
  • [9] Gopal, V., Gupta, S. (2006). Contribution of dislocations to 1/f noise in mercury cadmium telluride infrared photovoltaic detectors. Infrared Physics & Technology, 48, 59-66.
  • [10] Johnson, S. M., Rhiger, D. R., Rosbeck, J. P., Peterson, J. M., Taylor, S. M. (1992). Effect of dislocations on the electrical and optical properties of long wavelength infrared HgCdTe photovoltaic detectors. J. Vac. Sci. Technol., B 10, 1499.
  • [11] Józwikowski, K., Józwikowska, A., Koptyko, M., Rogalski, A., Jaroszewicz, L. R. (2012). Simplified model of dislocations as a SRH recombination channel in the HgCdTe heterostructures. Infrared Physics & Technology, 55(1), 98-107.
  • [12] Elliott, C. T., Gordon, N. T., Hall, R. S., Phillips, T. J. (1997). 1/f Noise Studies in Uncooled Narrow Gap Hg1-xCdxTe Non-Equilibrium Diodes. Journal of Electronic Material, vol. 26, 6, 643-648.
  • [13] Rais, M. H., Musca, C. A., Dell, J. M., Antoszewski, J., Nener, B. D., Faraone, L. (2000). Photovoltaic detectors fabricated using a new junction formation technology. Microelectronics Journal, 31, 545-551.
  • [14] Juang, F. S., Su, Y. K., Chang, S. J., Chang, S. M., Shu, F. S., Chiang, C. D., Cherng, Y. T., Sun, T. P. (1999). Dark Currents in HgCdTe Photodiodes Passivated with ZnS/CdS. Journal of the Electrochemical Society, 146 (4), 1540-1545.
  • [15] Transimpedance amplifier EG&G 5182. Instruction manual. (January 2014). http://www.signalrecovery.com.
  • [16] Kinch, M. A., Strong, R. L., Schaake, C. A. (2013). 1/f Noise in HgCdTe Focal-Plane Arrays. Journal of Electronic Material, vol. 42, 11, 3243-3251.
  • [17] Hooge, F. N., Klainpenning, T. G M., Vandamme, L. K. J. (1981). Experimental studies on 1/f noise. Rep. Prog. Phys., vol. 44, 479.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bda667ea-d090-4869-ae44-e0da481b817f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.