PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Precipitation evolution and surface modification of magnesium alloys

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The purpose of this publication is to present the results of own long-term research summarising the experience concerning as casting magnesium alloys, and in especially a thermal analysis describing the process of alloys crystallisation, standard heat treatment according to the occurring phase transitions and precipitation processes, surface treatment with the CVD and PVD methods, laser surface treatment of surface layers, as well as using the methods of Computer Materials Science. Design/methodology/approach: The research concerned in the first place an analysis of Mg-Al-Zn alloys crystallisation kinetics. Optimisation investigations for heat treatment conditions taking into consideration different cooling mediums were performed in order to identify fully the structure of the investigated magnesium casting alloys. Investigations were carried out of the structure and properties of coatings produced with the CVD and PVD methods on the investigated Mg-Al-Zn alloys. The last stage of investigating the presented Mg-Al-Zn alloys applied to laser surface treatment enabling to produce a quasi-composite structure of MMCs characterised by the gradient of phase composition as well as functional properties by feeding hard ceramic particles, in particular carbides and oxides, into the surface of the materials produced. Findings: Valuable and original results were achieved based on the broad scope of the research performed both, in cognitive and applicational terms, concentrated mainly on the analysis and influence of chemical composition and technological heat and surface treatment processes on the structure and properties of the investigated alloys. Practical implications: The properties of the core and surface layer of the part produced can be customised most advantageously by selecting the part’s material and its structure and properties formation processes appropriately along with the surface layer type and technology ensuring the required functional properties. Originality/value: The knowledge gathered for years concerning light metal alloys, and in particular Mg-Al-Zn alloys, of an undoubtedly valuable cognitive character, is dedicated not only to students but also postgraduates and researches to improve the conditions of education.
Rocznik
Strony
87--149
Opis fizyczny
Bibliogr. 87 poz., rys., tab.
Twórcy
autor
  • Institute of Engineering Materials and Biomaterials, Silesian University of Technology,ul. Konarskiego 18a, 44-100 Gliwice, Poland
autor
  • Institute of Engineering Materials and Biomaterials, Silesian University of Technology,ul. Konarskiego 18a, 44-100 Gliwice, Poland
  • Institute of Engineering Materials and Biomaterials, Silesian University of Technology,ul. Konarskiego 18a, 44-100 Gliwice, Poland
autor
  • Institute of Non-ferrous Metals, ul. Sowińskiego 5, 44-100 Gliwice, Poland
  • Institute of Non-ferrous Metals, ul. Sowińskiego 5, 44-100 Gliwice, Poland
Bibliografia
  • [1] Z. Górny, J. Sobczak, Non-ferrus metals based novel materials in foundry practice, Publisher Institute of Foundry, Cracow, 2005 (in Polish).
  • [2] L.A. Dobrzański, Materials engineering and materials design: fundamentals of materials science and metallography, Scientific and Technical Publishing, Warsaw, 2006 (in Polish).
  • [3] L.A. Dobrzański, T. Tański, L. Čížek, Z. Brytan, Structure and properties of the magnesium casting alloys, Journal of Materials Processing Technology 192-193 (2007) 567-574.
  • [4] K. Przybyłowicz, Metallography, Scientific and Technical Publishing, Warsaw, 2007 (in Polish).
  • [5] L.A. Dobrzański, Rules of selection of engineering materials, Publisher of Silesian University of Technology, Gliwice, 2001 (in Polish).
  • [6] H. Friedrich, S. Schumann, Research for a ”new age of magnesium” in the automotive industry, Journal of Materials Processing Technology 117 (2001) 276-281.
  • [7] H. Baker, ASM Specialty Handbook, Magnesium and magnesium alloys, Avedesian (Ed.), ASM International, The Materials Information Society, USA 1999.
  • [8] L.A. Dobrzański, T. Tański, L. Čížek, The microstructure and mechanical properties of Mg - Al cast magnesium alloys, Archives of Foundry Engineering 6/22 (2006) 614-619 (in Polish).
  • [9] M. Saternus, Magnesium - technology, production and perspectives, Ores and non-ferrous metals 53/6 (2008) 337-349 (in Polish).
  • [10] L.A. Dobrzański, B. Tomiczek, M. Pawlyta, M. Król, Aluminium AlMg1SiCu matrix composite materials reinforced with halloysite particles, Archives of Metallurgy and Materials 59/1 (2014) 333-336
  • [11] F. Biczyk, Structural casting alloys, Publisher of Silesian University of Technology, Gliwice, 2003 (in Polish).
  • [12] K.U. Kainem, Magnesium - Alloys and Technology, Willey-VH, Weinheim, 2003.
  • [13] Z. Górny, Casting of metals and alloys, vol. III. Special methods of casting, Foundry Institute, Cracow, 1997.
  • [14] A. Kosowski, Metallography of cast alloys, AGH Publisher, Cracow, 1996 (in Polish).
  • [15] S. Lun Sin, D. Dubé, Influence of process parameters on fluidity of investment-cast AZ91D magnesium alloy, Materials Science and Engineering A 386 (2004) 34-42.
  • [16] R. Dębicki, Growth application perspectives of non-ferrous castings for the automotive industry, Materials of science conference, „Modern trends in non-ferrous metal foundry”, Cracow, 1997, 37-59 (in Polish).
  • [17] A. Białobrzeski, Pressure founding, Scientific and Technical Publishing, Warsaw 1992 (in Polish).
  • [18] A. Fajkiel, P. Dudek, Magnesium alloys - a modern station for casting in Foundry Research Institute in Cracow, Bulletin of the Institute of Foundry no. 3, Cracow, 2000 (in Polish).
  • [19] L.A. Dobrzański, T. Tański, Influence of aluminium content on behaviour of magnesium cast alloys in bentonite sand mould, Solid State Phenomena 147-149 (2009) 764-769.
  • [20] J. Sieniawski, Metallography and heat treatment, Rzeszów University of Technology Publishing House, Rzeszow, 2001 (in Polish).
  • [21] Standard specification for magnesium alloys die castings, ASTM B94-94, American Society for Testing and Materials, 1994.
  • [22] M. Szweycer, D. Nagolska, Metallurgy and foundries - materials technology, Publisher of Poznan University of Technology, Poznan, 2002 (in Polish).
  • [23] M. Svoboda, M. Pahutová, K. Kuchaŕová, V. Sklenička, T.G. Langdon, The role of matrix microstructure in the creep behaviour of discontinuous fiber-reinforced AZ 91 magnesium alloy, Materials Science and Engineering A 324 (2002) 151-156.
  • [24] L. Čížek, J. Hubáčková, M. Greger, L. Pawlica, R. Kocich, B. Smetana, T. Tański, S. Król, Heat treatment of selected magnesium alloys, 21 Days of Heat Treatment, Jihlava 2006, 361-366.
  • [25] L. Čížek, R. Kocich, M. Greger, T. Taski, M. Prażmowski, Study of microstructure selected magnesium alloys, Materials Engineering 14 (2007) 21-24.
  • [26] L.A. Dobrzański, T. Tański, L. Čížek, Investigation of the MCMgAl12Zn1 magnesium alloys structure after heat treatment, Journal of Achievements in Materials and Manufacturing Engineering 29/1 (2008) 23-30.
  • [27] L. A. Dobrzański, T. Tański, Sz. Malara, M. Król, J. Domagała-Dubiel, Contemporary forming methods of the structure and properties of cast magnesium alloys, Magnesium Alloys - Design, Processing and Properties, F. Czerwinski (Ed.), Publisher InTech, 2011, 321-350.
  • [28] A. Kiełbus, T. Rzychoń, R. Cibis, Microstructure of AM50 die casting magnesium alloy, Journal of Achievements in Materials and Manufacturing Engineering 18 (2006) 135-138.
  • [29] L. A. Dobrzański, M. Król, T. Tański, Thermal analysis, structure and mechanical properties of the MC MgAl3Zn1 cast alloy, Journal of Achievements in Materials and Manufacturing Engineering 40/2 (2010) 167-174.
  • [30] L.A. Dobrzański, W. Kasprzak, J. Sokołowski, R. Maniara, M. Krupiński, Applications of the derivation analysis for assessment of the ACAlSi7Cu alloy crystallization process cooled with different cooling rate, Proceedings of the 13th Scientific International Conference on “Achievements in Mechanical and Materials Engineering” AMME’2005, Gliwice-Wisła, 2005, 147-150.
  • [31] L.A. Dobrzański, R. Maniara, J.H. Sokolowski, The effect of cooling rate on microstructure and mechanical properties of AC AlSi9Cu alloy, Archives of Materials Science and Engineering 28/2 (2007) 105-112.
  • [32] L.A. Dobrzański, R. Maniara, J. Sokołowski, W. Kasprzak , Effect of cooling rate on the solidification behavior of AC AlSi7Cu2 alloy, Journal of Materials Processing Technology 191 (2007) 317-320.
  • [33] W. Longa, solidification of castings, Publisher „Śląsk”, Katowice, 1985 (in Polish).
  • [34] M. Stawarz, J. Szajnar, Quality assessment of ductile iron by ATD method, Archives of Foundry Engineering 3/10 (2003) 199-206 (in Polish).
  • [35] T. Tański, K. Labisz, Electron microscope investigation of PVD coated aluminium alloy surface layer, Solid State Phenomena 186 (2012) 192-197.
  • [36] T. Tański, K. Lukaszkowicz, Investigation of microstructure and mechanical properties of PVD-coated magnesium and aluminium alloys, Proceedings of the 8th International Conference on Industrial Tools and Material Processing Technologies, 2011, 363-368.
  • [37] L.A. Dobrzański, K. Lukaszkowicz, A. Kriz, Properties of multi-layer Ti/CrN and Ti/TiAlN coatings deposited with the PVD technique onto the brass substrate, Journal of Materials Processing Technology 143 (2003) 832-837.
  • [38] K. Lukaszkowicz, J. Sondor, A. Kriz, M. Pancielejko, Structure, mechanical properties and corrosion resistance of nanocomposite coatings deposited by PVD technology onto the X6CrNiMoTi17-12-2 and X40CrMoV5-1 steel substrates, Journal of Materials Science 45 (2010) 1629-1637.
  • [39] T. Tański, Investigation of the structure and properties of PVD and PACVD-coated magnesium die cast alloys, Magnesium Alloys, Waldemar A. Monteiro (Ed.), Publisher InTech, 2012 (in print).
  • [40] T. Tański, K. Labisz, K. Lukaszkowicz, Structure and properties of diamond-like carbon coatings deposited on non-ferrous alloys substrate, Solid State Phenomena 199 (2013) 170-175.
  • [41] L.A. Dobrzański, M. Staszuk, PVD and CVD gradient coatings on sintered carbides and sialon tool ceramics, Journal of Achievements in Materials and Manufacturing Engineering. 43/2 (2010) 552-576.
  • [42] H. Altun, S. Sen, The effect of PVD coatings on the wear behaviour of magnesium alloys, Materials Characterization 58 (2007) 917-921.
  • [43] J. Liang, P. Wang, L.T. Hu, J.C. Hao, Tribological properties of duplex MAO/DLC coatings on magnesium alloy using combined microarc oxidation and filtered cathodic arc deposition, Materials Science and Engineering A 454-455 (2007) 164-169.
  • [44] H.Q. Sun, Y.N. Shi, M.X. Zhang, Wear behaviour of AZ91D magnesium alloy with a nanocrystalline surface layer, Surface and Coating Technology 202 (2008) 2859-2864.
  • [45] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, Forming of the engineering materials surface structure and properties, The Silesian University of Technology Publishing House, Gliwice, 2013, 1-492 (in Polish).
  • [46] L.A. Dobrzański, J. Domagaa, T. Tański, A. Klimpel, D. Janicki, Laser surface treatment of magnesium alloy with WC powder, Archives of Materials Science and Engineering 30/2 (2008) 113-116.
  • [47] L.A. Dobrzański, Sz. Malara, T. Tański, Laser surface treatment of magnesium alloys with aluminium oxide powder, Journal of Achievements in Materials and Manufacturing Engineering 37/1 (2009) 70-77.
  • [48] L. A. Dobrzański, T. Tański, Sz. Malara, Effect of the heat and surface laser treatment on the corrosion degradation of the Mg-Al alloys, Materials Engineering - Materiálové inžinierstvo 18 (2011) 85-92.
  • [49] T. Tański, K. Lukaszkowicz, Structure and mechanical properties of hybrid PVD coatings applied onto magnesium and aluminum alloys, Materials Engineering 4/182 (2011) 772-775 (in Polish).
  • [50] L.A. Dobrzański, T. Tański, J. Domagała, M. Bonek, A. Klimpel, Microstructure analysis of the modified casting magnesium alloys after heat and laser treatment, Journal of Achievements in Materials and Manufacturing Engineering 32/1 (2009) 7-12.
  • [51] A. Klimpel, Laser technologies in welding, Publisher of Silesian University of Technology, Gliwice, 2011 (in Polish).
  • [52] J. Kusiński, Lasers and their applications in materials engineering, Scientific Publishers „Akapit”, Cracow, 2002 (in Polish).
  • [53] J. Kusiński, Joint penetration laser treatment, Ironmaster - Ironmaster News 4 (2002) 166-175 (in Polish).
  • [54] A. Klimpel, The application of high power diode laser for welding and surfacing, Overview of welding 6 (2001) 1-6 (in Polish).
  • [55] T. Burakowski, T. Wierzchoń, Engineering of metal surfaces, Scientific and Technical Publishing, 1995 (in Polish).
  • [56] C. Bishop, Neural networks for pattern recognition, Oxford University Press, London, 1995.
  • [57] T. Masters, Neural networks in practice, WNT Publisher, Warsaw, 1996 (in Polish).
  • [58] L.A. Dobrzański, A. Śliwa, T. Tański, Numerical simulation model for the determination of hardness for casting the magnesium alloys MCMgAl6Zn1, Archives of Materials Science 29/ 3 (2008) 118-124.
  • [59] L.A. Dobrzański, T. Tański, J. Trzaska, Optimization of heat treatment conditions of magnesium cast alloys, Materials Science Forum 638-642 (2010) 1488-1493.
  • [60] L.A. Dobrzański, M. Król, T. Tański, Application a neural networks in crystallization process of Mg-Al-Zn alloys, Archives of Computational Materials Science and Surface Engineering 2/3 (2010) 149-156.
  • [61] L. A. Dobrzański, T. Tański, The application of neural networks to optimize the heat treatment conditions of Mg-Al alloys, Technical Magazine, Mechanics, 7/108 (2011) 81-86 (in Polish).
  • [62] W.S. McCulloch, W. Pitts, Bulletin of Mathematical Biophysics, 9, 1943.
  • [63] M. Nałęcz, W. Ducha, J. Korbicz, L. Rutkowskiego, R. Tadeusiewicza, Biocybernetics and Biomedical Engineering, vol. 6, Neural networks, EXIT, Warsaw, 2000 (in Polish).
  • [64] R. Tadeusiewicz, Neural networks, Academic Publishing House RM, Warsaw 1993 (in Polish).
  • [65] M.H. Beale, H.B. Demuth, M.T. Hagan, Neural network design, University of Colorado Bookstore, Boulder, Colarado, 2002.
  • [66] “Method and Apparatus for Universal Metallurgical Simulation and Analysis” - United States Patent, Patent No: US 7,354,491 B2, Date of Patent 2008, Canadian Patent, Patent No.:CA 2 470 127, Date of Patent 2009.
  • [67] www.uwindsor.ca/umsa.
  • [68] L. A. Dobrzański, M. Król, T. Tański, Influence of cooling rate on crystallization, structure and mechanical properties of MCMgAl6Zn1 alloy, Archives of Foundry Engineering 10/3 (2010) 105-110.
  • [69] L.A. Dobrzański, M. Król, T. Tański, Effect of cooling rate and aluminum contents on the Mg-Al-Zn alloys’ structure and mechanical properties, Journal of Achievements in Materials and Manufacturing Engineering 43/2 (2010) 613-633.
  • [70] L.A. Dobrzański, M. Król, T. Tański, R. Maniara, Thermal analysis of the MCMgAl9Zn1 magnesium alloy, Journal of Achievements in Materials and Manufacturing Engineering vol. 34/2 (2008), pp. 113-116
  • [71] L. A. Dobrzański, M. Król, T. Tański, R. Maniara, Effect of cooling rate on the solidification behaviour of MCMgAl6Zn1 alloy, Archives of Materials Science and Engineering 29/3 (2008) 110-117.
  • [72] L.A. Dobrzański, M. Król, T. Tański, R. Maniara, Effect of cooling rate on the solidification behaviour of magnesium alloys, Archives of Computational Materials Science and Surface Engineering 1/1 (2009) 21-24.
  • [73] L.A. Dobrzański, M. Król, T. Tański, R. Maniara, Effect of cooling rate on the solidification behaviour of MC MgAl6Zn1 alloy, Journal of Achievements in Materials and Manufacturing Engineering 37/1 (2009) 65-69.
  • [74] www.crct.polymtl.ca
  • [75] S. Jura, Z. Jura, Theory of ATD method in studies of Al alloys, Solidification of Metals and Alloys 28 (1996) 57-87 (in Polish).
  • [76] S. Pietrowski, Silumin, Publisher of University of Lodz, Łódź, 2001 (in Polish).
  • [77] J. Gawroński, The crystallization of alloys. Method of thermal and derivative analysis (ATD), Archives of Foundry Engineering, 16 (2005) 256-261 (in Polish).
  • [78] L. Backuerud, G. Chai, J Tamminen, Solidification characteristics of aluminum alloys vol. 3 Foundry alloys, AFS Skanaluminium, Stockholm, 1990.
  • [79] T. Tański, K. Lukaszkowicz, Structure and mechanical properties of hybrid PVD coatings applied onto the magnesium and aluminum alloys, Materials Engineering, 4/182 (2011) 772-775 (in Polish).
  • [80] L. Čížek, L. Pawlica, R. Kocich, M. Janošec, T. Tański, M. Prażmowski, Structure and properties of Mg-Zr and Mg-Si alloys, Journal of Achievements in Materials and Manufacturing Engineering 27/2 (2008) 127-130.
  • [81] Y.S. Zou, Y.F. Wu, H. Yang, K. Cang, G.H. Song, Z.X. Li, K. Zhou, The microstructure, mechanical and friction properties of protective diamond like carbon films on magnesium alloy, Applied Surface Science 258 (2011) 1624-1629.
  • [82] G. Abbas, Z. Liu, P. Skeldon, Corrosion behaviour of laser-melted magnesium alloys, Applied Surface Science 247 (2005) 347-353.
  • [83] D. Dube, M. Fiset, A. Couture, I. Nakatsugawa, Characterization and performance of laser melted AZ91D and AM60B, Materials Science and Engineering A 299 (2001) 38-45.
  • [84] L. Li, The advances and characteristics of high-power diode laser materials processing, Optics and Lasers in Engineering 34 (2000) 231-253.
  • [85] Y. Jun, G.P. Sunb, S.S. Jia, Characterization and wear resistance of laser surface melting AZ91D alloy, Journal of Alloys and Compounds 455 (2008) 142-147.
  • [86] J.D. Majumdar, R. Galun, B.L. Mordike, I. Manna, Effect of laser surface melting on corrosion and wear resistance of a commercial magnesium alloy, Materials Science Engineering A 361 (2003) 119-129.
  • [87] A.K. Mondal, S. Kumar, C. Blawert, N.B. Dahotre, Effect of laser surface treatment on corrosion and wear resistance of ACM720 Mg alloy, Surface and Coating Technology 202 (2008) 3187-3198.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bd998666-008c-47c1-846c-2ca2799f33f0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.