PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Sondy fluorescencyjne typu „light up” do detekcji i obrazowania G-kwadrupleksów in vitro i in vivo. Cz. 1 i 2

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Light up fluorescent probes for detection and visualizing the G-quadruplexes in vitro and in vivo. Part 1 and 2
Języki publikacji
PL
Abstrakty
EN
G-quadruplexes are non-canonical guanosine rich four stranded nucleic acids structures consisting of at least two or more G-tetrads stabilized by an array of Hoogsteen hydrogend bonds and monovalent cations. The distinguishing feature of the G-quadruplexes is their high thermal stability and structural polymorphism in aqueous media. In parallel, a great number of GQ structures have been extensively surveyed ex vivo by means of biophysical techniques such as nuclear magnetic resonance (NMR) spectroscopy, circular dichroism (CD) spectroscopy, and X-ray crystallography. Accumulating evidence suggesting that G-quadruplexes play essential role in a numerous biological processes in vivo, including DNA replication and transcription, RNA translation as well as genomic maintenance. Consequently, G-quadruplexes has attracted attention as therapeutic targets in cancer or hereditary diseases as well as molecular target in cellular biology. Study on G-quadruplexes:ligand interaction by NMR, CD, UV and fluorescence spectroscopy in vitro or in vivo has become an intensive research work area of many groups in recent years. Nowadays, there are available large amount of organic compounds that selectively bind to G-quadruplexes and their photophysical and kinetic properties were comprehensively characterized but only few of them are endowed with fluorescence properties that could be applicable as fluorescent probes in cellular biology or in vitro detection. Interestingly, the group of these fluorescent probes is characterized by a vast structural diverisity resulting from the different way of interaction with G-quadruplexes as well as G-quadruplex polymorphism. This review focuses on the G-quadruplex-selective light up fluorescent probes that have been employed for in vitro detection as well as cellular imaging along with a summary of the key photophysical, biophysical, and biological properties of reported examples.
Rocznik
Strony
883--901
Opis fizyczny
Bibliogr. 117 poz., rys., schem., tab.
Twórcy
  • Zakład Biomolekularnego NMR, Instytut Chemii Bioorganicznej PAN, Ul. Z. Noskowskiego 12/14, 61-704 Poznań
Bibliografia
  • [1] H.L. Lightfoot, T. Hagen, N.J. Tatum, J. Hall, FEBS Letters, 2019, 593, 2083.
  • [2] D. Rhodes, H.J. Lipps, Nucl. Acids Res., 2015, 43, 8627.
  • [3] J. Spiegel, S. Adhikari, S. Balasubramanian, Trends Chem., 2020, 2, 123.
  • [4] S. Millevoi, H. Moine, S. Vagner, WIREs RNA, 2012 3, 495.
  • [5] M.M. Fay, S.M. Lyons, P. Ivanov, J. Mol. Biol., 2017, 429, 2127.
  • [6] M. Małgowska, D. Gudanis, A. Teubert, G. Dominiak, Z. Gdaniec, BioTechnologia, 2012, 93, 381.
  • [7] P. Murrat, Y. Singh, E. Defrancq, Chem. Soc. Rev., 2011, 40, 5293.
  • [8] J. Jaumot, R. Gargallo, Curr. Pharm. Design, 2012, 18, 1900.
  • [9] E. Largy, A. Granzhan, F. Hamon, D. Verga, M.P. Teulade-Fichou, Top. Curr. Chem., 2013, 330, 111.
  • [10] Y.L. Lu, S.C. Yan, F.Z. Chan, L. Zou, W.H. Chung, W.L. Wong, B. Qiu, N. Sun, P.H. Chan, Z.S. Huang, L.Q. Gu, K.Y. Wong, Chem Commun., 2011, 47, 4971.
  • [11] Y.J. Lu, Z.Y. Wang, D.P. Hu, Q. Deng, B.H. Huang, Y.X. Fang, K. Zhang, W.L. Wong, C.F. Chow, Dyes Pigm., 2015, 122, 94.
  • [12] Y.L. Lu, Q. Deng, J.Q. Hou, D.P. Hu, Z.Y. Wang, K. Zhang, L.G. Luyt, W.L. Wong, C.F. Chow, ACS Chem. Biol., 2016, 11, 1019.
  • [13] L.L. Li, H.R. Xu, K. Li, Q. Yang, S.L. Pan, X.Q. Yu, Sens. Actuators B, 2019, 252, 575.
  • [14] X. Chen, J. Wang, G. Jiang, G. Zua, M. Liua, L. Zhoua, R. Pei, RSC Adv., 2016, 6, 70117.
  • [15] P. Yang, A. DeCian, M.R. Teulade-Fichou, J.L. Mergny, D. Monchaud, Angew. Chem. Int. Ed., 2009, 48, 2188.
  • [16] H. Chen, H. Sun, S. Zhang, W. Ya, Q. Li, A. Guan, J. Xiang, M. Liud, T. Tang, Chem. Commun. 2019, 55, 5060.
  • [17] B. Karg, A. Funke, A. Ficht, A. Sievers-Engler, M. Lämmerhofer, K. Weisz, Chem. Eur. J., 2015, 21, 13802.
  • [18] Q. Chen, I.D. Kuntz, R.H. Shafer, Proc Natl Acad Sci USA 1996, 93, 2635.
  • [19] Q. Yang, J. Xiang, S. Yang, Q. Zhou, Q. Li, Y. Tang, G. Xua, Chem Commun., 2009, 1103.
  • [20] Q. Yang, J. Xiang, S. Yang, Q. Li, Q. Zhou, A. Guan, X. Zhang, H. Zhang, Y. Tang, G. Xu, Nucl. Acids Res. 2010, 38, 1022.
  • [21] Q. Yang, J.F. Xiang, S. Yang, Q. Li, Q. Zhou, A. Guan, L. Li, Y. Zhang, X. Zhang, H. Zhang, Y. Tang, G. Xu, Anal. Chem., 2010, 82, 9135.
  • [22] H. Ihmels, L. Thomas, Org. Biomol. Chem. 2013, 11, 480.
  • [23] J. Mohanty, N. Barooah, V. Dhamodharan, S. Harikrishna, P.I. Pradeepkumar, A.C. Bhasikuttan, J. Am. Chem. Soc. 2013, 135, 367.
  • [24] S. Xu, Q. Li, J. Xiang, Q. Yang, H. Sun, A. Guan, L. Wang, Y. Liu, L. Yu, Y. Shi, H. Chen, Y. Tang, Sci Rep, 2016, 6, 24793.
  • [25] A.M. Fleming, Y. Ding, A. Alenko, C.J. Burrows, ACS Infect Dis 2016, 2, 674.
  • [26] M. Zahin, W.L. Dean, S.J. Ghim, J. Joh, RD Gray, S. Khanal, G.D. Bossart, A.A. Mignucci-Giannoni, E.C. Rouchka, A.B. Jenson, J.O. Trent, J.B. Chaires, J.H. Chariker, PLoS ONE 2018, 13(4), e0195625.
  • [27] W.A. Vinyard, A.M. Fleming, J. Ma, C.J. Burrows, Biochemistry 2018, 57(47), 6551.
  • [28] S. Zhang, H. Sun, L. Wang, Y. Liu, H. Chen, Q. Li, A. Guan, M. Liu, Y. Tang, Nucl. Acids. Res. 2018, 46, 7522.
  • [29] A. Guan, X.F. Zhang, X. Sun, Q. Li, J.F. Xiang, L.X. Wang, L. Lan, F.M. Yang, S.J. Xu, X.M. Guo,Y.L. Tang, Sci. Rep. 2018, 8, 2666.
  • [30] Y. Kataoka, H. Fujita, Y. Kasahara, T. Yoshihara, S. Tobita, M. Kuwahara, Anal. Chem. 2014 86(24), 12078.
  • [31] S. Maiti, N.K. Chaudhury, S. Chowdhury, Biochem. Bioph. Res. Comm. 2003, 310, 505.
  • [32] U. Tawar, A.K. Jain, R. Chandra, Y. Singh, B.S. Dwarakanath, N.K. Chaudhury, L. Good, V. Tandon, Biochemistry 2003, 42(45), 13339.
  • [33] A.K. Jain, V.V. Reddy, A. Paul, K. Muniyappa, S. Bhattacharya, Biochemistry 2009, 48(45), 10693.
  • [34] F. Koeppel, J.F. Riou, A. Laoui, P. Mailliet, P.B. Arimondo, D. Labit, O. Petitgenet, C. Héléne, J.L. Mergny, Nucl. Acids Res. 2001, 29(5), 1087.
  • [35] T.Y. Tseng, C.H. Chien, J.F. Chu, W.C. Huang, M.Y. Lin, C.C. Chang, T.C. Chang, J. Biomed. Opt. 2013, 18(10), 101309.
  • [36] C.C. Chang, J.Y. Wu, C.W. Chien, W.S. Wu, H. Liu, C.C. Kang, L.J. Yu, T.C. Chang, Anal. Chem. 2003, 75, 6177.
  • [37] C.C. Chang, C. W. Chien, Y.H. Lin, C.C. Kang, T.C. Chang, Nucl. Acids Res. 2007, 35(9), 2846.
  • [38] C.C. Chang, I.C. Kuo, J.J. Lin, Y.C. Lu, C.T. Chen, H.T. Back, P.J Lou, T.C. Chang, Chem. Biodiver. 2004, 1(9), 1377.
  • [39] C.C. Chang, J.F. Chu, F.J. Kao, Y.C. Chiu, P.J. Lou, H.C. Chen, T.C. Chang, Anal. Chem. 2006, 78, 2810.
  • [40] T.Y. Tseng, W.W. Chen, I.T. Chu, C.L. Wang, C.C. Chang, M.C. Lin, P.J. Lou, T.C. Chang, Sci. Rep. 2018, 8, 16082.
  • [41] W.C. Huang, T.Y. Tseng, Y.T. Chen, C.C. Chang, Z.F. Wang, C.L. Wang, T.N. Hsu, P.T. Li, C.T. Chen, J.J. Lin, P.J. Lou, T.C. Chang, Nucl. Acids Res. 2015, 43(21), 10102.
  • [42] C.C. Kang, W.C. Huang, C.W. Kouh, Z.F. Wang, C.C. Cho, C.C. Chang, C.L. Wang, T.C. Chang, J. Seemann, L.J. Huang, Integr. Biol. 2013, 5, 1217.
  • [43] B. Dumat, G. Bordeau, E. Faurel-Paul, F. Mahuteau-Betzer, N. Saettel, M. Bombled, G. Metgé, F. Charra, C. Fiorini-Debuisschert, M.P. Teulade-Fichou, Biochimie2011, 93, 1209.
  • [44] X.F. Zhang, H.J. Zhang, J.F. Xiang, Q. Li, Q.F. Yang, Q. Shang, Y.X. Zhang, Y.L. Tang, J. Mol. Struct. 2010, 982, 133.
  • [45] B. Jin, X. Zhang, W. Zheng, X. Liu, C. Qi, F. Wang, D. Shangguan, Anal. Chem. 2014, 86, 943.
  • [46] Y. Wei, X. Zhang, L. Wang, Y. Liu, T. Bing, X. Liua, D. Shangguan, RSC Adv. 2015, 5, 75911.
  • [47] B. Maji, K. Kumar, M. Kaulage, K. Muniyappa, S. Bhattacharya, J. Med. Chem. 2014, 57, 6973.
  • [48] D. Panda, M. Debnath, S. Mandal, I. Bessi, H. Schwalbe, J. Dash, Sci. Rep. 2015, 5, 13183.
  • [49] D. Lin, X. Fei, Y. Gu, C. Wang, Y. Tang, R. Lib, J. Zhou, Analyst 2015, 140, 5772.
  • [50] M.H. Hu, R.J. Guo, S.B. Chen, Z.S. Huang, J.H. Tan, Dyes Pigm. 2017, 137, 191.
  • [51] F. Gao, S. Cao, W. Sun, S. Long, J. Fan, X. Peng, Dyes Pigm. 2019, 171, 107749.
  • [52] S. Wu, L. Wang, N. Zhang, Y. Liu, W. Zheng, A. Chang, F. Wang, S. Li, D. Shangguan, Chem. Eur. J. 2016, 22, 6037.
  • [53] C. Yang, R. Hu, Q. Li, S. Li, J. Xiang, X. Guo, S. Wang, Y. Zeng, Y. Li, G. Yang, ACS Omega 2018, 3(9), 10487.
  • [54] Y.J. Lu, D.P. Hu, K. Zhang, W.L. Wong, C.F. Chow, Biosens. Bioelectron. 2016, 81, 373.
  • [55] Y.L. Lu, X.L. Guo, M.H. Xu, W.W. Chen, W.L. Wong, K. Zhang, C.F. Chow, Dyes Pigm. 2017 143, 331.
  • [56] M.Q. Wang, Y. Wu, Z.Y. Wang, Q.Y. Chen, F.Y. Xiao, Y.C. Jiang, A. Sang, Dyes Pigm. 2017, 145, 1.
  • [57] M.Q. Wang, J. Xu, L. Zhang, Y. Liao, H. Wei, Y.Y. Yin, Q. Liu, Y. Zhang, Bioorg. Med. Chem. 2019, 27, 552.
  • [58] M.Q. Wang, Y. Zhang, X.Y. Zeng, H. Yang, C. Yang, R.Y. Fu, H.J. Li, Dyes Pigm. 2019, 168, 334.
  • [59] J. Carvalho, E. Pereira, J. Marquevielle, M.P.C. Campello, J.L. Mergny, A. Paulo, G.F. Salgado, J.A. Queiroz, C. Cruz, Biochimie 2018, 144, 144.
  • [60] Q. Zhang, Y.C. Liu, D.M. Kong, D.S. Guo, Chem. Eur. J. 2015, 21, 13253.
  • [61] J.W. Yan, S.B. Chen, H.T. Liu, W.J. Ye, T.M. Ou, J.H. Tan, D. Li, L.Q. Gu, Z.S. Huang, Chem. Commun. 2014, 50, 6927.
  • [62] S.B. Chen, M.H. Hu, G.C. Liu, J. Wang, T.M. Ou, L.Q. Gu, Z.S. Huang, J.H. Tan J. Am. Chem. Soc. 2016, 138, 10382.
  • [63] K. Lyu, S.B. Chen, C.Y. Chan, J.H. Tan, C.K. Kwok, Chem. Sci. 2019, 10, 11095.
  • [64] H.H. Tan, T.M. Ou, J.Q. Hou, Y.L. Lu, S.L. Huang, H.B. Luo, J.Y. Wu, Z.S. Huang, K.Y. Wong, L.Q. Gu, J. Med. Chem. 2009, 52(9), 2825.
  • [65] W.J. Zhang, T.M. Ou, Y.L. Lu, Y.Y. Huang, W.B. Wu, Z.S. Huang, J.L. Zhou, K.Y. Wong, L.Q. Gu, Bioorg. Med. Chem. 2007, 15, 5493.
  • [66] A.C. Bhasikuttan, J. Mohanty, H. Pal, Angew. Chem. Int. Ed. 2007, 46, 9305.
  • [67] D.M. Kong, Y.E. Ma, H.H. Guo, W. Yang, H.X. Shen, Anal. Chem. 2009, 81, 2678.
  • [68] D.M. Kong, Y.E. Ma, J. Wu, H.X. Shen, Chem. Eur. J. 2009, 15, 901.
  • [69] H. Lai, Y. Xiao, S. Yan, F. Tian, C. Zhong, Y. Liu, X. Weng, X. Zhou, Analyst 2014, 139, 1834.
  • [70] M.Q. Wang, W.X. Zhu, Z.Z. Song, S. Li, Y.Z. Zhang, Bioorg. Med. Chem. Lett. 2015, 25, 5672.
  • [71] M.Q. Wang, L.X. Gao, Y.F. Yang, X.N. Xiong, Z.Y. Zheng, S. Li, Y. Wu, Y.Y. Ma, Tetrahedron Lett 2016, 57, 5042.
  • [72] M.Q. Wang, S. Liu, C.P. Tang, A. Raza, S. Li, L.X. Gao, J. Sun, S.P. Guo, Dyes Pigm. 2017, 136, 78.
  • [73] M.Q. Wang, Z.Y. Wang, Y.F. Yang, G.Y. Ren, X.N. Liu, S. Li, J.W. Wei, L. Zhang, Tetrahedron Lett 2017, 58, 3296.
  • [74] D. You, L. Liu, Q. Yang, X. Wu, S. Li, A. Li, Dyes Pigm. 2020, 176, 108222.
  • [75] Y. Chen, S. Yan, L. Yuan, Y. Zhou, Y. Song, X. Xiao, X. Weng, X. Zhou, Org. Chem. Front. 2014, 1, 267.
  • [76] B. Jin, X. Zhang, W. Zheng, X. Liu, J. Zhou, N. Zhang, F. Wang, D. Shangguan, Anal. Chem. 2014, 86, 7063.
  • [77] X. Zhang, Y. Wei, T. Bing, X. Liu, N. Zhang, J. Wang, J. He, B. Jin, D. Shangguan, Sci. Rep. 2017, 7, 4766.
  • [78] V. Grande, F. Doria, M. Freccero, F. Wurthner, Angew. Chem. Int. Ed. 2017, 56, 7520.
  • [79] M. Zuffo, F. Doria, V. Spalluto, S. Ladame, M. Freccero, Chem. Eur. J. 2015, 21, 17596.
  • [80] M. Zuffo, S. Ladame, F. Doria, M. Freccero, Sensor Actuat B-Chem 2017, 245, 780.
  • [81] R. Perrone, F. Doria, E. Butovskaya, I. Frasson, S. Botti, M. Scalabrin, S. Lago, V. Grande, M. Nadai, M. Freccero, S.N. Richter, J. Med. Chem. 2015, 58, 9639.
  • [82] F. Doria, M. Nadai, M. Zuffo, R. Perrone, M. Freccero, S.N. Richter, Chem. Commun. 2017, 53, 2268.
  • [83] F. Doria, A. Oppi, F. Manoli, S. Botti, N. Kandoth, V. Grande, I. Manet, M. Freccero, Chem. Commun. 2015, 51, 9105.
  • [84] A. Shivalingam, M.A. Izquierdo, A. Le Marois, A. Vysniauskas, K. Suhling, M.K. Kuimova, R. Vilar, Nature Comm. 2015, 6, 8178.
  • [85] L. Zhang, J.C. Er, K.K. Ghosh, W.J. Chung, J. Yoo, W. Xu, W. Zhao, A.T. Phan, Y.T. Chang, Sci. Rep. 2013, 4, 3776.
  • [86] G. Feng, C. Luo, H. Yi, L. Yuan, B. Lin, X. Luo, X. Hu, H. Wang, C. Lei, Z. Nie, S. Yao, Nucl. Acids Res. 2017, 45(18), 10380.
  • [87] M. Deiana, K. Chand, J. Jamroskovic, I. Obi, E. Chorell, N. Sabouri, Angew. Chem. 2020, 132, 906.
  • [88] M.H. Hu, S.B. Chen, R.J. Guo, T.M. Ou, Z.S. Huang, J.H. Tan, Analyst 2015, 140, 4616.
  • [89] M.H. Hu, X. Chen, S.B. Chen, T.M. Ou, M. Yao, L.Q. Gu, Z.S. Huang, J.H. Tan, Sci. Rep. 2015, 5, 17202.
  • [90] M.H. Hu, S.B. Chen, B. Wang, T.M. Ou, L.Q. Gu, J.H. Tan, Z.S. Huang, Nucl. Acids Res. 2017, 45(4), 1606.
  • [91] M.H. Hu, J. Zhou, W.H. Luo, S.B. Chen, Z.S. Huang, R. Wu, J.H. Tan, Anal. Chem. 2019, 91, 2480.
  • [92] M.H. Hu, Y.Q. Wang, Z.Y. Yu, L.N. Hu, T.M. Ou, S.B. Chen, Z.S. Huang, J.H. Tan, J. Med. Chem. 2018, 61, 2447.
  • [93] J. Ren, J.B. Chaires, Biochemistry 1999, 38, 16067.
  • [94] A. Siddiqui-Jain, C.L. Grand, D.J. Bearss, L.H. Hurley, PNAS 2002, 99(18), 11593.
  • [95] M.W. Freyer, R. Buscaglia, K. Kaplan, D. Cashman, L.H. Hurley, E.A. Lewis, Biophys. J. 2007, 92, 2007.
  • [96] E. Boschi, S. Davis, S. Taylor, A. Butterworth, L.A. Chirayath, V. Purohit, L.K. Siegel, J. Buenaventura, A.H. Sheriff, R. Jin, R. Sheardy, L.A. Yatsunyk, M. Azam, J. Phys. Chem. B 2016, 120, 12807.
  • [97] H. Arthanari, S. Basu, T.L. Kawano, P.H. Bolton, Nucl. Acids Res. 1998, 26(16), 3724.
  • [98] T. Li, E. Wang, S. Dong, Anal. Chem. 2010, 82, 7576.
  • [99] H. Qin, J. Ren, J. Wang, N.W. Luedtke, E. Wang, Anal. Chem. 2010, 82, 8356.
  • [100] J. Alzeer, B.R. Vummidi, PJ.C. Roth, N.W. Luedtke, Angew. Chem. Int. Ed. 2009, 48, 9362.
  • [101] A. Membrino, M. Paramasivam, S. Cogoi, J. Alzeer, N.W. Luedtke, L.E. Xodo, Chem. Commun. 2010, 46, 625.
  • [102] D.P.N. Goncalves, R. Rodriguez, S. Balasubramanian, J.K.M. Sanders, Chem. Commun. 2006, 4685.
  • [103] J. Alzeer, N.W. Luedtke, Biochemistry 2010, 49, 4339.
  • [104] D.L. Ma, C.M. Che, S.C. Yan, J. Am. Chem. Soc. 2009, 131(5), 1835.
  • [105] P. Wang, C.H. Leung, D.L. Ma, S.C. Yan, C.M. Che, Chem. Eur. J. 2010, 16, 6900.
  • [106] P. Wu, D.L. Ma, C.H. Leung, S.C. Yan, N. Zhu, R. Abagyan, C.M. Che, Chem. Eur. J. 2009, 15, 13008.
  • [107] S. Shi, X. Geng, J. Zhao, T. Yao, C. Wang, D. Yang, L. Zheng, L. Ji, Biochimie 2010, 92, 370.
  • [108] S. Shi, J. Zhao, X. Geng, T. Yao, H. Huang, T. Liu, L. Zheng, Z. Li, D. Yanga, L. Ji, Dalton. Trans. 2010, 39, 2490.
  • [109] J. Sun, Y. An, L. Zhang, H.Y. Chen, Y. Han, Y.J. Wang, Z.W. Mao, L.N. Ji, J. Inorg. Biochem. 2011, 105, 149.
  • [110] C. Rajput, R. Rutkaite, L. Swanson, I. Haq, J.A. Thomas, Chem. Eur. J. 2006, 12, 4611.
  • [111] M. Gill, J. Garcia-Lara, S. Foster, C. Smythe, G. Battaglia, J. Thomas, Nature Chem. 2009, 1, 662.
  • [112] L. Xu, D. Zhang, J. Huang, M. Deng, M. Zhang, X. Zhou, Chem. Commun. 2010, 46, 743.
  • [113] S. Xu, Q. Li, J. Xiang, Q. Yang, H. Sun, A. Guan, L. Wang, Y. Liu, L. Yu, Y. Shi, H. Chen, Y. Tang, Nucl. Acids Res. 2015, 43(20), 9575.
  • [114] Y. Wang, Y. Hu, T. Wu, H. Liu, L. Zhang, X. Zhou, Y. Shao, Analyst 2015, 140, 5169.
  • [115] X.C. Chen, S.B. Chen, J. Dai, J.H. Yuan, T.M. Ou, Z.S. Huang, J.T. Tan, Angew. Chem. Int. Ed. 2018, 57, 4702.
  • [116] X. Luo, B. Xue, G. Feng, J. Zhang, B. Lin, P. Zeng, H. Li, H. Yi, X.L. Zhang, H. Zhu, Z. Nie, J. Am. Chem. Soc. 2019, 141, 5182.
  • [117] A. Laguerre, K. Hukezalie, P. Winckler, F. Katranji, G. Chanteloup, M. Pirrotta, J.M. Perrier-Cornet, J.M.Y. Wong, D. Monchaud, J. Am. Chem. Soc. 2015, 137, 8521.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bd8d42bc-f64d-4b1a-99e2-21524751ee13
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.