PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Technological Conditions for the Coagulation of Wastewater from Cosmetic Industry

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Coagulation is often used for the pre-treatment of industry wastewater, with effectiveness strictly dependent on technological conditions. This study aimed at determining what technological parameters of coagulation of cosmetic industry wastewater provide the highest efficiency of clarification. The dosages of reagents, the order of dosing, as well as the one- and two-stage processes were investigated. The samples of raw wastewater were collected from average daily effluent from a cosmetics manufacturing plant. Liquid coagulant PIX 111 (FeCl3) and NaOH as a pH-adjusting agent were used. Jar-test experiments were carried out to determine the optimum conditions for turbidity and total organic carbon (TOC) removal. The efficiency of clarification was high (90–99%) across a wide range of pH values (6–9) and coagulant doses (0.5–1.25 mL/L). What is important is that the coagulant dose of 0.56 mL/L provided 97.6% clarification efficiency without the addition of the alkali. The minimal stoichiometric excess of alkalinity for effective coagulation was 0.5 mmol/L. In all samples, the removal efficiency for TOC was lower than for turbidity, because some of the organic carbon forms were non-coagulating dissolved compounds. The wastewater from tonic and fluid production was very susceptible to coagulation. The addition of the coagulant before the alkali resulted in better wastewater treatment efficiency than the reverse order. Single-stage process with optimal doses of the reagents allowed to clarify wastewater to a level of 10 NTU. On the other hand, the two-stage process brought the turbidity down to 1 NTU level.
Rocznik
Strony
78--85
Opis fizyczny
Bibliogr. 20 poz., rys.
Twórcy
  • Faculty of Civil and Environmental Engineering, Warsaw University of Life Sciences – SGGW, Nowoursynowska 166, 02-787 Warsaw, Poland
  • Faculty of Civil and Environmental Engineering, Warsaw University of Life Sciences – SGGW, Nowoursynowska 166, 02-787 Warsaw, Poland
autor
  • Faculty of Civil and Environmental Engineering, Warsaw University of Life Sciences – SGGW, Nowoursynowska 166, 02-787 Warsaw, Poland
autor
  • Department of Water Supply, Water Disposal and Drilling Engineering, National University of Water and Environmental Engineering, Soborna 11, 33028 Rivne, Ukraine
  • Faculty of Civil and Environmental Engineering, Warsaw University of Life Sciences – SGGW, Nowoursynowska 166, 02-787 Warsaw, Poland
Bibliografia
  • 1. Abdelmoez W., Barakat N. A. M., Moaz A. 2013. Treatment of wastewater contaminated with detergents and mineral oils using effective and scalable technology. Water Science and Technology, 68 (5), 974–981. DOI: 10.2166/wst.2013.275
  • 2. Aboulhassan M. A., Souabi S., Yaacoubi A., Baudu M. 2006. Removal of surfactant from industrial wastewaters by coagulation flocculation process. International Journal of Environmental Science and Technology, 3 (4), 327–332.
  • 3. Aloui F., Kchaou S., Sayadi S. 2009. Physicochemical treatments of anionic surfactants wastewater: Effect on aerobic biodegradability. Journal of Hazardous Materials, 164, 353–359. DOI:10.1016/j.jhazmat.2008.08.009
  • 4. Banchon C., Castillo A., Posligua P. 2017. Chemical interactions to cleanup highly polluted automobile service station wastewater by bioadsorptioncoagulation-flocculation. Journal of Ecological Engineering, 18 (1), 1–10.
  • 5. Bautista P., Mohedano A.F., Gilarranz M.A., Casas J.A., Rodriguez J.J. 2007. Application of Fenton oxidation to cosmetic wastewaters treatment. Journal of Hazardous Materials, 143, 128–134. DOI:10.1016/j.jhazmat.2006.09.004
  • 6. Bogacki J. P., Marcinowski P., Naumczyk J., Wiliński P. 2017. Cosmetic wastewater treatment using dissolved air flotation. Archives of Environmental Protection, 43 (2), 65–73. DOI: 10.1515/aep-2017–0018
  • 7. El-Gohary F., Tawfik A., Mahmoud U. 2010. Comparative study between chemical coagulation/precipitation (C/P) versus coagulation/dissolved air flotation (C/DAF) for pre-treatment of personal care products (PCPs) wastewater. Desalination, 252, 106–112. DOI:10.1016/j.desal.2009.10.016
  • 8. Formentini-Schmitt D. M., Dias Alves Á. C., Veit M. T., Bergamasco R., Vieira A. M. S., FagundesKlen M. R. 2013. Ultrafiltration combined with coagulation/flocculation/sedimentation using Moringa oleifera as coagulant to treat dairy industry wastewater. Water, Air and Soil Pollution, 224 (9), 1–10. DOI 10.1007/s11270–013–1682–2
  • 9. Ivanković T., Hrenović J. 2010. Surfactants in the environment. Arhiv za Higijenu Rada i Toksikologiju, 61, 95–110. DOI: 10.2478/10004–1254–61–2010–1943
  • 10. Kowal A.L., Świderska-Bróż M. 2007. Water treatment. Wydawnictwo Naukowe PWN, Warszawa. (in Polish)
  • 11. Kroczak T., Pyrz K., Świderska-Bróż M. 2005. Comparative study of single-stage and two-stage coagulation. Ochrona Środowiska, 27 (4), 49–52. (in Polish)
  • 12. Maciołek P., Szymański K., Schmidt R. 2018. Impact of sedimentation supported by coagulation process on effectiveness of separation of the solid phase from wastewater stream. Journal of Ecological Engineering, 19 (6), 81–87.
  • 13. Mahvi H., Maleki A., Roshani B. 2004. Removal of anionic surfactants in detergent wastewater by chemical coagulation. Pakistan Journal of Biological Sciences, 7 (12), 2222–2226.
  • 14. Melo E. D. d., Mounteer A. H., Souza Leăo L. H., Bahia R. C. B., Campos I. M. F. 2013. Toxicity identification evaluation of cosmetics industry wastewater. Journal of Hazardous Materials, 244–245, 329–334. DOI:10.1016/j.jhazmat.2012.11.051
  • 15. Michel M. M., Siwiec T., Tytkowska M., Reczek L. 2015. Analysis of flotation unit operation in coagulation of wastewater from a cosmetic factory. Przemysł Chemiczny, 94 (11), 2000–2005. DOI: 10.15199/62.2015.11.20 (in Polish)
  • 16. Naumczyk J., Marcinowski P., Bogacki J., Wiliński P. 2013. Cosmetic Wastewater Treatment by Coagulation. Annual Set The Environment Protection, 15, 873–891. (in Polish)
  • 17. Naumczyk J., Bogacki J., Marcinkowski P., Kowalik P. 2014. Cosmetic wastewater treatment by coagulation and advanced oxidation processes. Environmental Technology, 35 (5), 541–548. DOI: 10.1080/09593330.2013.808245
  • 18. Perdigon-Melon J.A., Carbajo J.B., Petre A.L., Rosal R., Garcia–Calvo E. 2010. CoagulationFenton coupled treatment for ecotoxicity reduction in highly polluted industrial wastewater. Journal of Hazardous Materials, 181, 127–132. DOI: 10.2016/j.jhazmat.2010.04.104
  • 19. Porras M., Talens-Alesson F.I. 1999. Removal of 2,4-D from water by adsorptive micellar flocculation. Environmental Science and Technology, 33 (18), 3206–3209.
  • 20. Puyol D., Monsalvo V.M., Mohedano A.F., Sanz J.L., Rodriguez J.J. 2011. Cosmetic wastewater treatment by upflow anaerobic sludge blanket reactor. Journal of Hazardous Materials, 185, 1059–1065. DOI:10.1016/j.jhazmat.2010.10.014
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bd89a87d-8a78-4391-9c11-92ca213b3937
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.