Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This study is devoted to exploring the existence and the precise form of finite-order transcendental entire solutions of second-order trinomial partial differential-difference equations [formula] and [formula], where L(f) and ˜L(f) are defined in (2.1) and (2.2), respectively, and g(z) is a polynomial in C2. Our results are the extensions of some of the previous results of Liu et al. Also, we exhibit a series of examples to explain that the forms of transcendental entire solutions of finite-order in our results are precise.
Wydawca
Czasopismo
Rocznik
Tom
Strony
art. no. 20240052
Opis fizyczny
Bibliogr. 40 poz.
Twórcy
autor
- School of Arts and Sciences, Suqian University, Suqian, Jiangsu 223800, P. R. China
autor
- Department of Mathematics, Ghani Khan Choudhury Institute of Engineering and Technology, Narayanpur, Malda, PIN 732141, West Bengal, India
Bibliografia
- [1] A. Wiles, Modular elliptic curves and Fermat’s last theorem, Ann. of Math. 141 (1995), 443–551.
- [2] W. K. Hayman, Meromorphic Functions, The Clarendon Press, Oxford, 1964.
- [3] I. Laine, Nevanlinna Theory and Complex Differential Equations, Walter de Gruyter Berlin/Newyork, 1993.
- [4] P. Montel, Leçons sur les Familles Normales de Fonctions Analytiques et Leurs Applications, Gauthier-Villars, Paris, 1927, pp. 135–136.
- [5] G. Iyer, On certain functional equations, J. Indian Math. Soc. 3 (1939), 312–315.
- [6] F. Gross, On the equation fn(z)+gn(z)=1, Bull. Amer. Math. Soc. 72 (1966), 86–88.
- [7] C. C. Yang and P. Li, On the transcendental solutions of a certain type of non-linear differential equations, Arch. Math. 82 (2004), 442–448.
- [8] Y. M. Chiang and S. J. Feng, On the Nevanlinna characteristic of f(z+η) and difference equations in the complex plane, Ramanujan J. 16 (2008), 105–129.
- [9] R. G. Halburd and R. J. Korhonen, Difference analog of the lemma on the logarithmic derivative with applications to difference equations, J. Math. Anal. Appl. 314 (2006), 477–487.
- [10] R. G. Halburd and R. J. Korhonen, Finite-order meromorphic solutions and the discrete Painleve equations, Proc. Lond. Math. Soc. 94 (2007), no. 2, 443–474.
- [11] P. Li and C. C. Yang, On the nonexistence of entire solutions of certain type of nonlinear differential equations, J. Math. Anal. Appl. 320 (2006), 827–835.
- [12] L. W. Liao, C. C. Yang, and J. J. Zhang, On meromorphic solutions of certain type of non-linear differential equations, Ann. Fenn. Math. 38 (2013), 581–593.
- [13] G. Haldar, On entire solutions of system of Fermat-type difference and differential-difference equations, J. Anal. 32 (2024)1519–1543, DOI: https://doi.org/10.1007/s41478-023-00702-3.
- [14] K. Liu, T. B. Cao, and H. Z. Cao, Entire solutions of Fermat-type differential-difference equations, Arch. Math. 99 (2012), 147–155.
- [15] K. Liu and L. Z. Yang, A note on meromorphic solutions of Fermat-types equations, An. Stiint. Univ. Al. I. Cuza Lasi Mat. (N. S.). 1 (2016), 317–325.
- [16] G. Haldar, Solutions of Fermat-type partial differential difference equations in ℂ 2, Mediterr. J. Math. 20 (2023), 50, DOI: https://doi.org/10.1007/s00009-022-02180-6.
- [17] G. Haldar, On entire solutions of system of Fermat-type difference and partial differential-difference equations in ℂn, Rend. Circ. Mat. Palermo 73 (2024), 1467–1490, DOI: https://doi.org/10.1007/s12215-023-00997-y.
- [18] G. Haldar and A. Banerjee, Characterizations of entire solutions for the system of Fermat-type binomial and trinomial shift equations in ℂn, Demonstr. Math. 56 (2023), 20230104, DOI: https://doi.org/10.1515/dema-2023-0104.
- [19] G. Haldar and A. Banerjee, On entire solutions of Fermat-type difference and k-th order partial differential difference equations in several complex variables, Afr. Mat. 35 (2024), 45, DOI: https://doi.org/10.1007/s13370-024-01188-3.
- [20] G. Haldar and M. B. Ahamed, Entire solutions of several quadratic binomial and trinomial partial differential-difference equations in ℂ 2, Anal. Math. Phys. 12 (2022), 113, DOI: https://doi.org/10.1007/s13324-022-00722-5.
- [21] H. Y. Xu and G. Haldar, Solutions of complex nonlinear functional equations including second-order partial differential and difference equations in ℂ 2, Electron. J. Differential Equations 43 (2023), 1–18.
- [22] H.Y. Xu and G. Haldar, Entire solutions to Fermat-type difference and partial differential-difference equations in ℂn, Electron. J. Differential Equations 2024 (2024), no. 26, 1–21.
- [23] H. Y. Xu, H. Li, and X. Ding, Entire and meromorphic solutions for systems of the differential difference equations, Demonstr. Math. 55 (2022), 676–694, DOI: https://doi.org/10.1515/dema-2022-0161.
- [24] H. Y. Xu and Y. Y. Jiang, Results on entire and meromorphic solutions for several systems of quadratic trinomial functional equations with two complex variables, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 116 (2022), 8, DOI: https://doi.org/10.1007/s13398-021-01154-9.
- [25] E. G. Saleeby, On entire and meromorphic solutions of λuk+∑i=1nuzim=1, Complex Var. Theory Appl. 49 (2004), 101–107.
- [26] E. G. Saleebly, Entire and meromorphic solutions of Fermat-type partial differential equations, Analysis (Munich) 19 (1999), 369–376.
- [27] D. Khavinson, A note on entire solutions of the Eiconal equation, Amer. Math. Monthly 102 (1995), 159–161.
- [28] B. Q. Li, Entire solutions of (uz1)m+(uz2)n=eg, Nagoya Math. J. 178 (2005), 151–162.
- [29] B. Q. Li, Entire solutions of Eiconal type equations, Arch. Math. 89 (2007), 350–357.
- [30] L. Xu and T. B. Cao, Solutions of complex Fermat-type partial difference and differential-difference equations, Mediterr. J. Math. 15 (2018), 1–14.
- [31] H. Y. Xu, K. Y. Zhang, and X. M. Zheng, Entire and meromorphic solutions for several Fermat-type partial differential difference equations in ℂ 2, Rocky Mountain J. Math. 52 (2022), no. 6, 2169–2187.
- [32] E. G. Saleeby, On complex analytic solutions of certain trinomial functional and partial differential equations, Aequationes Math. 85 (2013), 553–562.
- [33] H. Li and H. Y. Xu, Solutions for several quadratic trinomial difference equations and partial differential difference equations in ℂ 2, Axioms 10 (2021), 126. DOI: https://doi.org/10.3390/axioms10020126.
- [34] T. B. Cao, The growth, oscillation and fixed points of solutions of complex linear differential equations in the unit disc, J. Math. Anal. Appl. 352 (2009), no. 2, 739–748.
- [35] T. B. Cao and R. J. Korhonen, A new version of the second main theorem for meromorphic mappings intersecting hyperplanes in several complex variables, J. Math. Anal. Appl. 444 (2016), no. 2, 1114–1132.
- [36] P. C. Hu, P. Li, and C. C Yang, Unicity of Meromorphic Mappings, Advances in Complex Analysis and its Applications, vol. 1. Kluwer Academic Publishers, Dordrecht, Boston, London, 2003.
- [37] P. Lelong, Fonctionnelles Analytiques et Fonctions Entières (n variables), Presses de l’Université de Montréal, Montréal, 1968.
- [38] W. Stoll, Holomorphic Functions of Finite Order in Several Complex Variables, American Mathematical Society, Providence, 1974.
- [39] L. I. Ronkin, Introduction to the Theory of Entire Functions of Several Variables, Moscow: Nauka 1971 (Russian), American Mathematical Society, Providence, 1974.
- [40] G. Pólya, On an integral function of an integral function, J. Lond. Math. Soc. 1 (1926), 12–15.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2026).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bd88df1d-68b4-48bb-a081-4ea59d2c644d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.