PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The advent of Artificial Intelligence (AI) has resulted in development of novel applications in a multitude of fields, such as in Medicine, to aid medical professionals in clinical diagnosis. Specifically, the field of Emergency Medicine has been of immense interest to researchers, with vast untapped potential for AI solutions to improve operational efficiencies and quality of healthcare. Aside from primary healthcare facilities, the Emergency Department serves as the first line of contact to patients, who often present with varying and undifferentiated symptoms. Several challenges faced by clinicians and patients alike, such as waiting times and diagnostic dilemmas, present opportunities for application of AI solutions. In this paper, we aim to summarise the applications of AI in the field of Emergency Medicine by reviewing recent developments in Emergency Department operations and in the clinical management of patients.
Twórcy
  • Science, Mathematics and Technology Cluster, Singapore University of Technology and Design, 8 Somapah Rd, S487372, Singapore
  • MOH Holdings Pte Ltd, 1 Maritime Square, S099253, Singapore
  • University of Bristol, Queen's Building, Bristol BS8 1TR, UK
  • Department of Electronics and Instrumentation Engineering, St. Joseph's College of Engineering, Chennai 600119, India
  • Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore; Department of Biomedical Informatics and Medical Engineering, Asia University, Taichung, Taiwan; International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, Kumamoto, Japan
  • Science, Mathematics and Technology Cluster, Singapore University of Technology and Design, 8 Somapah Rd, S487372, Singapore
Bibliografia
  • [1] N. C. for health statistics (US), health, United States, 2017: with special feature on mortality [Internet], technical report. National Center for Health Statistics (US); 2018, https://www.ncbi.nlm.nih.gov/books/NBK532685/.
  • [2] Hunt MT, Glucksman ME. A review of 7 years of complaints in an inner-city accident and emergency department. Emerg Med J 1991;8:17–23. http://dx.doi.org/10.1136/emj.8.1.17.
  • [3] Vezyridis P, Timmons S. National targets, process transformation and local consequences in an NHS emergency department (ED): a qualitative study. BMC Emerg Med 2014;14:12. http://dx.doi.org/10.1186/1471-227X-14-12.
  • [4] Bobrovitz N, Lasserson DS, Briggs ADM. Who breaches the four-hour emergency department wait time target? A retrospective analysis of 374,000 emergency department attendances between 2008 and 2013 at a type 1 emergency department in England. BMC Emerg Med 2017;17:32. http://dx.doi.org/10.1186/s12873-017-0145-2.
  • [5] Hobbs D, Kunzman SC, Tandberg D, Sklar D. Hospital factors associated with emergency center patients leaving without being seen. Am J Emerg Med 2000;18:767–72. http://dx.doi.org/10.1053/ajem.2000.18075.
  • [6] American college of emergency physicians, definition ofemergency medicine; 2015, https://www.acep.org/patient-care/policy-statements/ definition-of-emergency-medicine/, Accessed: 2020-08-10.
  • [7] Schneider SM, Hamilton GC, Moyer P, Stapczynski JS. Definition of emergency medicine. Acad Emerg Med 1998;5:348–51. http://dx.doi.org/10.1111/j.1553-2712.1998.tb02720.x.
  • [8] Skansi S. Introduction to deep learning, undergraduate topics in computer science. Cham: Springer International Publishing; 2018. http://dx.doi.org/10.1007/978-3-319-73004-2.
  • [9] Nvidia. Artificial neural network | NVIDIA developer; 2020, https://developer.nvidia.com/discover/ artificial-neural-network, Accessed: 2020-11-24.
  • [10] Alom MZ, Taha TM, Yakopcic C, Westberg S, Sidike P, Nasrin MS, et al. A state-of-the-art survey on deep learning theory and architectures. Electronics 2019;8. http://dx.doi.org/10.3390/electronics8030292292.
  • [11] Khamparia A, Singh KM. A systematic review on deep learning architectures and applications. Expert Syst 2019;36:e12400. http://dx.doi.org/10.1111/exsy.12400.
  • [12] Christ M, Grossmann F, Winter D, Bingisser R, Platz R. Modern triage in the emergency department, Deutsches Aerzteblatt Online 2010; 2010. http://dx.doi.org/10.3238/arztebl.2010.0892.
  • [13] Jarvis PRE. Improving emergency department patient flow. Clin Exp Emerg Med 2016;3:63–8. http://dx.doi.org/10.15441/ceem.16.127.
  • [14] Jo S, Jeong T, Jin YH, Lee JB, Yoon J, Park B. ED crowding is associated with inpatient mortality among critically ill patients admitted via theED: post hoc analysis from a retrospective study. Am J Emerg Med 2015;33:172531. http://dx.doi.org./10.1016/j.ajem.2015.08.004.
  • [15] Sprivulis PC, Da Silva J, Jacobs IG, Jelinek GA, Frazer ARL. The association between hospital overcrowding and mortality among patients admitted via Western Australian emergency departments. Med J Aust 2006;184:208–12. http://dx.doi.org/10.5694/j.1326-5377.2006.tb00203.x.
  • [16] Singer AJ, Thode Jr HC, Viccellio P, Pines JM. The association between length of emergency department boarding and mortality. Acad Emerg Med 2011;18:1324–9. http://dx.doi.org/10.1111/j.1553-2712.2011.01236.x.
  • [17] Kanglie MMNP, Bipat S, van den Berk IAH, van Engelen TSR, Dijkgraaf MGW, Prins JM, et al. OPTimal IMAging strategy in patients suspected of non-traumatic pulmonary disease at the emergency department: chest X-ray or ultra-low-dose chest CT (OPTIMACT) trial-statistical analysis plan. Trials 2020;21:407. http://dx.doi.org/10.1186/s13063-020-04343-w.
  • [18] Price CI, Shaw L, Islam S, Javanbakht M, Watkins A, McMeekin P, et al. Effect of an enhanced paramedic acute stroke treatment assessment on thrombolysis delivery during emergency stroke care. JAMA Neurol 2020;77:840. http://dx.doi.org/10.1001/jamaneurol.2020.0611.
  • [19] Sun W, Jiang M, Dang J, Chang P, Yin F-F. Effect of machine learning methods on predicting NSCLC overall survival time based on Radiomics analysis. Radiat Oncol 2018;13:197. http://dx.doi.org/10.1186/s13014-018-1140-9.
  • [20] Nie D, Lu J, Zhang H, Adeli E, Wang J, Yu Z, et al. Multichannel 3D deep feature learning for survival time prediction of brain tumor patients using multi-modal neuroimages. Sci Rep 2019;9:1103. http://dx.doi.org/10.1038/s41598-018-37387-9.
  • [21] Krketowska M. Random forest of dipolar trees for survival prediction. In: Rutkowski L, Tadeusiewicz R, Zadeh LA, Zurada JM, editors. Artificial intelligence and soft computing – ICAISC 2006. Berlin, Heidelberg: Springer Berlin Heidelberg; 2006. p. 909–18.
  • [22] Zhang Z, Hong Y, Liu N, Chen Y. Diagnostic accuracy of contrast enhanced ultrasound in patients with blunt abdominal trauma presenting to the emergency department: a systematic review and meta-analysis. Sci Rep 2017;7:4446. http://dx.doi.org/10.1038/s41598-017-04779-2.
  • [23] Ladyzynski P, Molik M, Foltynski P. A network metaanalysis of progression free survival and overall survival in first-line treatment of chronic lymphocytic leukemia. Cancer Treat Rev 2015;41:77–93. http://dx.doi.org/10.1016/j.ctrv.2014.11.004.
  • [24] National university health system, emergency medicine; 2020, https://www.juronghealthcampus.com.sg/ ClinicalServiceDetail/Emergency_Medicine, Accessed: 2020- 08-10.
  • [25] Wilson MH, Habig K, Wright C, Hughes A, Davies G, Imray CHE. Pre-hospital emergency medicine. Lancet 2015;386:2526–34. http://dx.doi.org/10.1016/S0140-6736(15)00985-X.
  • [26] Kang D-Y, Cho K-J, Kwon O, Kwon J-m, Jeon K-H, Park H, et al. Artificial intelligence algorithm to predict the need for critical care in prehospital emergency medical services. Scand J Trauma Resusc Emerg Med 2020;28:17. http://dx.doi.org/10.1186/s13049-020-0713-4.
  • [27] Blomberg SN, Folke F, Ersbøll AK, Christensen HC, TorpPedersen C, Sayre MR, et al. Machine learning as a supportive tool to recognize cardiac arrest in emergency calls. Resuscitation 2019;138:322–9. http://dx.doi.org/10.1016/j.resuscitation.2019.01.015.
  • [28] Al-Dury N, Ravn-Fischer A, Hollenberg J, Israelsson J, Nordberg P, Strömsöe A, et al. Identifying the relative importance of predictors of survival in out of hospital cardiac arrest: a machine learning study. Scand J Trauma Resusc Emerg Med 2020;28:60. http://dx.doi.org/10.1186/s13049-020-00742-9.
  • [29] Lin AX, Ho AFW, Cheong KH, Li Z, Cai W, Chee ML, et al. Leveraging machine learning techniques and engineering of multi-nature features for national daily regional ambulance demand prediction. Int J Environ Res Public Health 2020;17:4179. http://dx.doi.org/10.3390/ijerph17114179.
  • [30] Brennan CW, Daly BJ. Patient acuity: a concept analysis. J Adv Nurs 2009;65:1114–26. http://dx.doi.org/10.1111/j.1365-2648.2008.04920.x.
  • [31] Fernandes M, Vieira SM, Leite F, Palos C, Finkelstein S, Sousa JM. Clinical decision support systems for triage in the emergency department using intelligent systems: a review. Artif Intell Med 2020;102:101762. http://dx.doi.org/10.1016/j.artmed.2019.101762.
  • [32] Levin S, Toerper M, Hamrock E, Hinson JS, Barnes S, Gardner H, et al. Machine-learning-based electronic triage more accurately differentiates patients with respect to clinical outcomes compared with the emergency severity index. Ann Emerg Med 2018;71. http://dx.doi.org/10.1016/j.annemergmed.2017.08.005. 565- 574.e2.
  • [33] Choi SW, Ko T, Hong KJ, Kim KH. Machine learning-based prediction of Korean triage and acuity scale level in emergency department patients. Healthc Inform Res 2019;25:305. http://dx.doi.org/10.4258/hir.2019.25.4.305.
  • [34] Kwon J-m, Lee Y, Lee Y, Lee S, Park H, Park J. Validation of deep-learning-based triage and acuity score using a large national dataset. PLOS ONE 2018;13:e0205836. http://dx.doi.org/10.1371/journal.pone.0205836.
  • [35] Yu JY, Jeong GY, Jeong OS, Chang DK, Cha WC. Machine learning and initial nursing assessment-based triage system for emergency department. Healthc Inform Res 2020;26:13. http://dx.doi.org/10.4258/hir.2020.26.1.13.
  • [36] Farahmand S, Shabestari O, Pakrah M, Hossein-Nejad H, Arbab M, Bagheri-Hariri S. Artificial intelligence-based triage for patients with acute abdominal pain in emergency department; a diagnostic accuracy study. Adv J Emerg Med 2017;1. http://dx.doi.org/10.22114/ajem.v1i1.11.
  • [37] Kim SW, Li JY, Hakendorf P, Teubner DJ, Ben-Tovim DI, Thompson CH. Predicting admission of patients by their presentation to the emergency department. Emerg Med Australas 2014;26:361–7. http://dx.doi.org/10.1111/1742-6723.12252.
  • [38] Hong WS, Haimovich AD, Taylor RA. Predicting hospital admission at emergency department triage using machine learning. PLOS ONE 2018;13:e0201016. http://dx.doi.org/10.1371/journal.pone.0201016.
  • [39] Raita Y, Goto T, Faridi MK, Brown DFM, Camargo CA, Hasegawa K. Emergency department triage prediction of clinical outcomes using machine learning models. Crit Care 2019;23:64. http://dx.doi.org/10.1186/s13054-019-2351-7.
  • [40] Goto T, Camargo CA, Faridi MK, Freishtat RJ, Hasegawa K. Machine learning-based prediction of clinical outcomes for children during emergency department triage. JAMA Netw Open 2019;2:e186937. http://dx.doi.org/10.1001/jamanetworkopen.2018.6937.
  • [41] Roquette BP, Nagano H, Marujo EC, Maiorano AC. Prediction of admission in pediatric emergency department with deep neural networks and triage textual data. Neural Netw 2020;126:170-7. https://doi.org/10.1016/j.neunet.2020.03.012.
  • [42] Zhang X, Kim J, Patzer RE, Pitts SR, Patzer A, Schrager JD. Prediction of emergency department hospital admission based on natural language processing and neural networks. Methods Inf Med 2017;56:377–89. http://dx.doi.org/10.3414/ME17-01-0024.
  • [43] Chen C-H, Hsieh J-G, Cheng S-L, Lin Y-L, Lin P-H, Jeng J-H. Emergency department disposition prediction using a deep neural network with integrated clinical narratives and structured data. Int J Med Inform 2020;104146. http://dx.doi.org/10.1016/j.ijmedinf.2020.104146.
  • [44] Xu M, Tam B, Thabane L, Fox-Robichaud A. A protocol for developing early warning score models from vital signs data in hospitals using ensembles of decision trees. BMJ Open 2015;5:e008699. http://dx.doi.org/10.1136/bmjopen-2015-008699.
  • [45] Sterling NW, Patzer RE, Di M, Schrager JD. Prediction of emergency department patient disposition based on natural language processing of triage notes. Int J Med Inf 2019;129:184–8. http://dx.doi.org/10.1016/j.ijmedinf.2019.06.008.
  • [46] Fernandes M, Mendes R, Vieira SM, Leite F, Palos C, Johnson A, et al. Predicting intensive care unit admission among patients presenting to the emergency department using machine learning and natural language processing. PLOS ONE 2020;15:e0229331. http://dx.doi.org/10.1371/journal.pone.0229331.
  • [47] Fernandes M, Mendes R, Vieira SM, Leite F, Palos C, Johnson A, et al. Risk of mortality and cardiopulmonary arrest in critical patients presenting to the emergency department using machine learning and natural language processing. PLOS ONE 2020;15:e0230876. http://dx.doi.org/10.1371/journal.pone.0230876.
  • [48] Resnikoff S, Lansingh VC, Washburn L, Felch W, Gauthier TM, Taylor HR, et al. Estimated number of ophthalmologists worldwide (International Council of Ophthalmology update): will we meet the needs? Br J Ophthalmol 2020;104:588–92. http://dx.doi.org/10.1136/bjophthalmol-2019-314336.
  • [49] Sommer A, Taylor HR, Ravilla TD, West S, Lietman TM, Keenan JD, et al. Challenges of ophthalmic care in the developing world. JAMA Ophthalmol 2014;132:640. http://dx.doi.org/10.1001/jamaophthalmol.201484.
  • [50] Torjesen I. Cardiologist shortage prompts NHS trust to ask GPs to cut referrals. BMJ 2016;i1304. http://dx.doi.org/10.1136/bmj.i1304.
  • [51] Vu T, Nguyen A, Brown N, Hughes J. Identifying patients with pain in emergency departments using conventional machine learning and deep learning. Proceedings of the ‘‘The 17th Annual Workshop of the Australasian Language Technology Association’’; 2019. p. 111–9, https://www.aclweb.org/anthology/U19-1015.
  • [52] López Pineda A, Ye Y, Visweswaran S, Cooper GF, Wagner MM, Tsui FR. Comparison of machine learning classifiers for influenza detection from emergency department freetext reports. J Biomed Inform 2015;58:60–9. http://dx.doi.org/10.1016/j.jbi.2015.08.019.
  • [53] Papini S, Pisner D, Shumake J, Powers MB, Beevers CG, Rainey EE, et al. Ensemble machine learning prediction of posttraumatic stress disorder screening status after emergency room hospitalization. J Anxiety Disord 2018;60:35–42. http://dx.doi.org/10.1016/j.janxdis.2018.10.004.
  • [54] Obeid JS, Weeda ER, Matuskowitz AJ, Gagnon K, Crawford T, Carr CM, et al. Automated detection of altered mental status in emergency department clinical notes: a deep learning approach. BMC Med Inf Decis Mak 2019;19:164. http://dx.doi.org/10.1186/s12911-019-0894-9.
  • [55] Sanderson M, Bulloch AG, Wang J, Williams KG, Williamson T, Patten SB. Predicting death by suicide following an emergency department visit for parasuicide with administrative health care system data and machine learning. EClinicalMedicine 2020;20:100281. http://dx.doi.org/10.1016/j.eclinm.2020.100281.
  • [56] Taylor RA, Moore CL, Cheung K-H, Brandt C. Predicting urinary tract infections in the emergency department with machine learning. PLOS ONE 2018;13:e0194085. http://dx.doi.org/10.1371/journal.pone.0194085.
  • [57] Lindsey R, Daluiski A, Chopra S, Lachapelle A, Mozer M, Sicular S, et al. Deep neural network improves fracture detection by clinicians. Proc Natl Acad Sci USA 2018;115:11591–6. http://dx.doi.org/10.1073/pnas.1806905115.
  • [58] Olczak J, Fahlberg N, Maki A, Razavian AS, Jilert A, Stark A, et al. Artificial intelligence for analyzing orthopedic trauma radiographs. Acta Orthopaedica 2017;88:581–6. http://dx.doi.org/10.1080/17453674.2017.1344459.
  • [59] Jang D-H, Kim J, Jo YH, Lee JH, Hwang JE, Park SM, et al. Developing neural network models for early detection of cardiac arrest in emergency department. Am J Emerg Med 2020;38:43–9. http://dx.doi.org/10.1016/j.ajem.2019.04.006.
  • [60] Lindholm D, Holzmann M. MACHINE LEARNING FOR IMPROVED DETECTION OF MYOCARDIAL INFARCTION IN PATIENTS PRESENTING WITH CHEST PAIN IN THE EMERGENCY DEPARTMENT. J Am College Cardiol 2018;71: A225. http://dx.doi.org/10.1016/S0735-1097(18)30766-6.
  • [61] Acharya UR, Oh SL, Hagiwara Y, Tan JH, Adam M, Gertych A, et al. A deep convolutional neural network model to classify heartbeats. Comput Biol Med 2017;89:389–96. http://dx.doi.org/10.1016/j.compbiomed.2017.08.022.
  • [62] Kwon J, Lee Y, Lee Y, Lee S, Park J. An algorithm based on deep learning for predicting in-hospital cardiac arrest. J Am Heart Assoc 2018;7. http://dx.doi.org/10.1161/JAHA.118.008678.
  • [63] Johnsson J, Björnsson O, Andersson P, Jakobsson A, Cronberg T, Lilja G, et al. Artificial neural networks improve early outcome prediction and risk classification in out-ofhospital cardiac arrest patients admitted to intensive care. Crit Care 2020;24:474. http://dx.doi.org/10.1186/s13054-020-03103-1.
  • [64] Liu T, Lin Z, Ong MEH, Koh ZX, Pek PP, Yeo YK, et al. Manifold ranking based scoring system with its application to cardiac arrest prediction: a retrospective study in emergency department patients. Comput Biol Med 2015;67:74–82. http://dx.doi.org/10.1016/j.compbiomed.2015.10.001.
  • [65] Fujita H, Acharya UR, Sudarshan VK, Ghista DN, Sree SV, Eugene LWJ, et al. Sudden cardiac death (SCD) prediction based on nonlinear heart rate variability features and SCD index. Appl Soft Comput 2016;43:510–9. http://dx.doi.org/10.1016/j.asoc.2016.02.049.
  • [66] Shi M, He H, Geng W, Wu R, Zhan C, Jin Y, et al. Early detection of sudden cardiac death by using ensemble empirical mode decomposition-based entropy and classical linear features from heart rate variability signals. Front Physiol 2020;11. http://dx.doi.org/10.3389/fphys.2020.00118.
  • [67] Rohila A, Sharma A. Detection of sudden cardiac death by a comparative study of heart rate variability in normal and abnormal heart conditions. Biocybern Biomed Eng 2020;40:1140–54. http://dx.doi.org/10.1016/j.bbe.2020.06.003.
  • [68] Devi R, Tyagi HK, Kumar D. A novel multi-class approach for early-stag prediction of sudden cardiac death. Biocybern Biomed Eng 2019;39:586–98. http://dx.doi.org/10.1016/j.bbe.2019.05.011.
  • [69] Bellew SD, Bremer ML, Kopecky SL, Lohse CM, Munger TM, Robelia PM, et al. Impact of an emergency department observation unit management algorithm for atrial fibrillation. J Am Heart Assoc 2016;5. http://dx.doi.org/10.1161/JAHA.115.002984.
  • [70] Park CS, Lee S-E, Cho H-J, Kim Y-J, Kang H-J, Oh B-H, et al. Body fluid status assessment by bio-impedance analysis in patients presenting to the emergency department with dyspnea. Korean J Intern Med 2018;33:911–21. http://dx.doi.org/10.3904/kjim.2016358.
  • [71] Moore B, Semsarian C, Chan KH, Sy RW. Sudden cardiac death and ventricular arrhythmias in hypertrophic cardiomyopathy. Heart Lung Circ 2019;28:146–54. http://dx.doi.org/10.1016/j.hlc.2018.07.019.
  • [72] Haqqani HM, Chan KH, Kumar S, Denniss AR, Gregory AT. The contemporary era of sudden cardiac death and ventricular arrhythmias: basic concepts, recent developments and future directions. Heart Lung Circ 2019;28:1–5. http://dx.doi.org/10.1016/S1443-9506(18)31972-3.
  • [73] Wong CX, Brown A, Lau DH, Chugh SS, Albert CM, Kalman JM, et al. Epidemiology of sudden cardiac death: global and regional perspectives. Heart Lung Circ 2019;28:6–14. http://dx.doi.org/10.1016/j.hlc.2018.08.026.
  • [74] Moridani MK, Setarehdan SK, Nasrabadi AM, Hajinasrollah E. Analysis of heart rate variability as a predictor of mortality in cardiovascular patients of intensive care unit. Biocybern BiomedEng 2015;35:217–26. http://dx.doi.org/10.1016/j.bbe.2015.05.004.
  • [75] Kim J, Chang H, Kim D, Jang D-H, Park I, Kim K. Machine learning for prediction of septic shock at initial triage in emergency department. J Crit Care 2020;55:163–70. http://dx.doi.org/10.1016/j.jcrc.2019.09.024.
  • [76] Perng J-W, Kao I-H, Kung C-T, Hung S-C, Lai Y-H, Su C-M. Mortality prediction of septic patients in the emergency department based on machine learning. J Clin Med 2019;8:1906. http://dx.doi.org/10.3390/jcm8111906.
  • [77] Taylor RA, Pare JR, Venkatesh AK, Mowafi H, Melnick ER, Fleischman W, et al. Prediction of in-hospital mortality in emergency department patients with sepsis: a local big data-driven, machine learning approach. Acad Emerg Med 2016;23:269–78. http://dx.doi.org/10.1111/acem.12876.
  • [78] Koh JEW, Raghavendra U, Gudigar A, Ping OC, Molinari F, Mishra S, et al. A novel hybrid approach for automated detection of retinal detachment using ultrasound images. Comput Biol Med 2020;120:103704. http://dx.doi.org/10.1016/j.compbiomed.2020.103704.
  • [79] Patel SJ, Chamberlain DB, Chamberlain JM. A machine learning approach to predicting need for hospitalization for pediatric asthma exacerbation at the time of emergency department triage. Acad Emerg Med 2018;25:1463–70. http://dx.doi.org/10.1111/acem.13655.
  • [80] Goto T, Camargo CA, Faridi MK, Yun BJ, Hasegawa K. Machine learning approaches for predicting disposition of asthma and COPD exacerbations in the ED. Am J Emerg Med 2018;36:1650–4. http://dx.doi.org/10.1016/j.ajem.2018.06.062.
  • [81] Ouchi K, Lindvall C, Chai PR, Boyer EW. Machine learning to predict, detect, and intervene older adults vulnerable for adverse drug events in the emergency department. J Med Toxicol 2018;14:248–52. http://dx.doi.org/10.1007/s13181-018-0667-3.
  • [82] Cheong KH, Ngiam NJ, Morgan GG, Pek PP, Tan BY-Q, Lai JW, et al. Acute Health Impacts of the Southeast Asian Transboundary Haze Problem - A Review. Int J Environ Res Public Health 2019;16:3286. http://dx.doi.org/10.3390/ijerph16183286.
  • [83] Ho AFW, Zheng H, Earnest A, Cheong KH, Pek PP, Seok JY, et al. Time-stratified case crossover study of the association of outdoor ambient air pollution with the risk of acute myocardial infarction in the context of seasonal exposure to the southeast Asian Haze problem. J Am Heart Assoc 2019;8. http://dx.doi.org/10.1161/JAHA.118.011272.
  • [84] Ho AFW, Zheng H, Cheong KH, En WL, Pek PP, Zhao X, et al. The Relationship Between Air Pollution and All-Cause Mortality in Singapore. Atmosphere 2020;11(9):9. http://dx.doi.org/10.3390/atmos11010009.
  • [85] Whitt W, Zhang X. Forecasting arrivals and occupancy levels in an emergency department. Oper Res Health Care 2019;21:1–18. http://dx.doi.org/10.1016/j.orhc.2019.01.002.
  • [86] Khaldi R, Afia AE, Chiheb R. Forecasting of weekly patient visits to emergency department: real case study. Proc Comput Sci 2019;148:532–41. http://dx.doi.org/10.1016/j.procs.2019.01.026.
  • [87] Yousefi M, Yousefi M, Fathi M, Fogliatto FS. Patient visit forecasting in an emergency department using a deep neural network approach. Kybernetes ahead-of-p 2019. http://dx.doi.org/10.1108/K-10-2018-0520.
  • [88] Kadri F, Baraoui M, Nouaouri I. An LSTM-based deep learning approach with application to predicting hospital emergency department admissions. 2019 International Conference on Industrial Engineering and Systems Management (IESM); 2019. pp. 1–6. http://dx.doi.org/10.1109/IESM45758.2019.8948130.
  • [89] Ho AFW, To BZYS, Koh JM, Cheong KH. Forecasting hospital emergency department patient volume using internet search data. IEEE Access 2019;7:93387–95. http://dx.doi.org/10.1109/ACCESS.2019.2928122.
  • [90] Ram S, Zhang W, Williams M, Pengetnze Y. Predicting asthma-related emergency department visits using big data. IEEE J Biomed Health Inform 2015;19:1216–23. http://dx.doi.org/10.1109/JBHI.2015.2404829.
  • [91] Kuo Y-H, Chan NB, Leung JM, Meng H, So AM-C, Tsoi KK, et al. An integrated approach of machine learning and systems thinking for waiting time prediction in an emergency department. Int J MedInform 2020;139:104143. http://dx.doi.org/10.1016/j.ijmedinf.2020.104143.
  • [92] Greenbaum NR, Jernite Y, Halpern Y, Calder S, Nathanson LA, Sontag DA, et al. Improving documentation of presenting problems in the emergency department using a domain-specific ontology and machine learning-driven user interfaces. Int J Med Inform 2019;132:103981. http://dx.doi.org/10.1016/j.ijmedinf.2019.103981.
  • [93] Tootooni MS, Pasupathy KS, Heaton HA, Clements CM, Sir MY. CCMapper: an adaptive NLP-based free-text chief complaint mapping algorithm. Comput Biol Med 2019;113:103398. http://dx.doi.org/10.1016/j.compbiomed.2019.103398.
  • [94] Frost DW, Vembu S, Wang J, Tu K, Morris Q, Abrams HB. Using the electronic medical record to identify patients at high risk for frequent emergency department visits and high system costs. Am J Med 2017;130:601.e17–2. http://dx.doi.org/10.1016/j.amjmed.2016.12.008.
  • [95] Vest JR, Ben-Assuli O. Prediction of emergency department revisits using area-level social determinants of health measures and health information exchange information. Int J Med Inform 2019;129:205–10. http://dx.doi.org/10.1016/j.ijmedinf.2019.06.013.
  • [96] Rahimian F, Salimi-Khorshidi G, Payberah AH, Tran J, Ayala Solares R, Raimondi F, et al. Predicting the risk of emergency admission with machine learning: development and validation using linked electronic health records. PLOS Med 2018;15:e1002695. http://dx.doi.org/10.1371/journal.pmed.1002695.
  • [97] Rubano E, Mehta N, Caputo W, Paladino L, Sinert R. Systematic review: emergency department bedside ultrasonography for diagnosing suspected abdominal aortic aneurysm. Acad Emerg Med 2013;20:128–38. http://dx.doi.org/10.1111/acem.12080.
  • [98] Cheong KH, Poeschmann S, Lai JW, Koh JM, Acharya UR, Yu SCM, et al. Practical automated video analytics for crowd monitoring and counting. IEEE Access 2019;7:183252–61. http://dx.doi.org/10.1109/ACCESS.2019.2958255.
  • [99] Edo-Osagie O, De La Iglesia B, Lake I, Edeghere O. A scoping review of the use of twitter for public health research. Comput Biol Med 2020;122:103770. http://dx.doi.org/10.1016/j.compbiomed.2020.103770.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bd880ac5-b7b9-4ef0-9216-bd1c9337684d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.