PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

New luminescence-based geochronology framing the last two glacial cycles at the southern limit of European Pleistocene loess in Stalać (Serbia)

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A new geochronology was established for the Stalać loess-paleosol sequence (LPS) in Serbia. The section is located in the interior of the Central Balkan region, south of the typical loess distribution, in a zone of paleoclimatic shifts between continental and Mediterranean climate regimes. The sampled sequence contains four well-developed paleosol and loess layers, a crypto tephra and one visible tephra layer. Optically stimulated luminescence measurements showed a strong dependency of preheat temperature on equivalent dose for one fine-grained quartz sample, which makes it unsuitable for dating. A firm chronology framing the last two glacial cycles was established using finegrained polyminerals and the post-infrared infrared stimulated luminescence (pIR50IR290) protocol instead. The characteristics of dated paleosols indicate similar climatic conditions during the last interstadial and interglacial phases, which were different from the penultimate interglacial period. The tephra within the L2 loess, probably related to tephra layers also found in other sections in Southeastern Europe, was sandwich-dated. The results indicate an age between 118 ka and 141 ka. Furthermore, a weak pedogenic layer dated to between 126 ka and 148 ka gives a first numerical age to this soil formation in Southeastern Europe.
Wydawca
Czasopismo
Rocznik
Strony
150--161
Opis fizyczny
Bibliogr. 75 poz., rys.
Twórcy
autor
  • Department of Geography, RWTH Aachen University, Templergraben 55, D-52056 Aachen, Germany
autor
  • Institute of Geography, University of Cologne, Albertus-Magnus-Platz, D-50923 Cologne, Germany
autor
  • Department of Geography, RWTH Aachen University, Templergraben 55, D-52056 Aachen, Germany
autor
  • Department of Geography, RWTH Aachen University, Templergraben 55, D-52056 Aachen, Germany
  • Laboratory for Paleoenvironmental Reconstruction, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
autor
  • BayCEER & Chair of Geomorphology, University of Bayreuth, D-94450 Bayreuth, Germany
  • Laboratory for Paleoenvironmental Reconstruction, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
autor
  • Department of Geography, RWTH Aachen University, Templergraben 55, D-52056 Aachen, Germany
Bibliografia
  • 1. Antoine P, Rousseau D-D, Fuchs M, Hatté C, Gauthier C, Marković SB, Jovanović M, Gaudenyi T, Moine O and Rossignol J, 2009. Highresolution record of the last climatic cycle in the southern Carpathian Basin (Surduk, Vojvodina, Serbia). Quaternary International 198(1–2): 19–36, DOI 10.1016/j.quaint.2008.12.008.
  • 2. Bailey RM, 1997. Partial bleaching and the decay form characteristics of quartz osl. Radiation Measurements 27(2): 123–136, DOI 10.1016/S1350-4487(96)00157-6.
  • 3. Bailey RM, 2010. Direct measurement of the fast component of quartz optically stimulated luminescence and implications for the accuracy of optical dating. Quaternary Geochronology 5(5): 559–568, DOI 10.1016/j.quageo.2009.10.003.
  • 4. Ballarini M, Wallinga J, Wintle AG and Bos AJJ, 2007. A modified SAR protocol for optical dating of individual grains from young quartz samples. Radiation Measurements 42(3): 360–369, DOI 10.1016/j.radmeas.2006.12.016.
  • 5. Banerjee D, Bøtter-Jensen L and Murray AS, 2000. Retrospective dosimetry: estimation of the dose to quartz using the single-aliquot regenerative-dose protocol. Applied Radiation and Isotopes 52(4): 831–844, DOI 10.1016/S0969-8043(99)00247-X.
  • 6. Basarin B, Buggle B, Hambach U, Marković SB, Dhand KO, Kovačević A, Stevens T, Guo Z and Lukić T, 2014. Time-scale and astronomical forcing of Serbian loess–paleosol sequences. Global and Planetary Change 122: 89–106, DOI 10.1016/j.gloplacha.2014.08.007.
  • 7. Basarin B, Vandenberghe DAG, Marković SB, Catto N, Hambach U, Vasiliniuc S, Derese C, Rončević S, Vasiljević DA and Rajić L, 2011. The Belotinac section (Southern Serbia) at the southern limit of the European loess belt: Initial results. Quaternary International 240(1–2): 128–138, DOI 10.1016/j.quaint.2011.02.022.
  • 8. Boljevac, 1968. Vojnogeografski institut, Zavod za geološka i geofizička istraživanja, Belgrade, Serbia. (Military Geographical Institute, Survey for geological and geophysical research, Belgrade, Serbia.) (in Serbian).
  • 9. Bösken J, Obreht I, Zeeden C, Klasen N, Sümegi P, Marković SB and Lehmkuhl F, 2014. Environmental conditions on the corridor of human migration between 40,000 and 14,000 a BP in the Balkan region. A multi-proxy approach on loess-paleosol profiles. Late Pleistocene and Holocene Climatic Variability in the CarpathianBalkan Region. Cluj-Napoca, Romania, 11–15.
  • 10. Bösken J, Sümegi P, Zeeden C, Klasen N, Gulyás S and Lehmkuhl F, accepted. Investigating the last glacial Gravettian site “Ságvár Lyukas Hill” (Hungary) and its paleoenvironmental and geochronological context using a multi-proxy approach. Palaeogeography, Palaeoclimatology, Palaeoecology.
  • 11. Brennan BJ, 2003. Beta doses to spherical grains. Radiation Measurements 37(4–5): 299–303, DOI 10.1016/S1350-4487(03)00011-8.
  • 12. Buggle B, Glaser B, Zöller L, Hambach U, Marković SB, Glaser I and Gerasimenko N, 2008. Geochemical characterization and origin of Southeastern and Eastern European loesses (Serbia, Romania, Ukraine). Quaternary Science Reviews 27(9–10): 1058–1075, DOI 10.1016/j.quascirev.2008.01.018.
  • 13. Buggle B, Hambach U, Glaser B, Gerasimenko N, Marković SB, Glaser I and Zöller L, 2009. Stratigraphy, and spatial and temporal paleoclimatic trends in Southeastern/Eastern European loess–paleosol sequences. Quaternary International 196(1–2): 86–106, DOI 10.1016/j.quaint.2008.07.013.
  • 14. Buggle B, Hambach U, Kehl M, Markovic SB, Zoller L and Glaser B, 2013. The progressive evolution of a continental climate in southeast-central European lowlands during the Middle Pleistocene recorded in loess paleosol sequences. Geology 41(7): 771–774, DOI 10.1130/G34198.1.
  • 15. Burow C, Zens J, Kreutzer S, Dietze M, Fuchs MC, Fischer M, Schmidt C and Brückner H, 2016. Exploratory data analysis using the R package “Luminescence” - towards data mining in OSL applications. Poster presented at the UK Luminescence and ESR Meeting 10th-13th July 2016. Liverpool.
  • 16. Buylaert J-P, Jain M, Murray AS, Thomsen KJ, Thiel C and Sohbati R, 2012. A robust feldspar luminescence dating method for Middle and Late Pleistocene sediments: Feldspar luminescence dating of Middle and Late Pleistocene sediments. Boreas 41(3): 435–451, DOI 10.1111/j.1502-3885.2012.00248.x.
  • 17. Chapot MS, Roberts HM, Duller GAT and Lai ZP, 2012. A comparison of natural- and laboratory-generated dose response curves for quartz optically stimulated luminescence signals from Chinese Loess. Radiation Measurements 47(11–12): 1045–1052, DOI 10.1016/j.radmeas.2012.09.001.
  • 18. Constantin D, Begy R, Vasiliniuc S, Panaiotu C, Necula C, Codrea V and Timar-Gabor A, 2014. High-resolution OSL dating of the Costineşti section (Dobrogea, SE Romania) using fine and coarse quartz. Quaternary International 334–335: 20–29, DOI 10.1016/j.quaint.2013.06.016.
  • 19. Dolić D, Kalenić M, Lončarević Č and Hadži-Vuković M, 1980. Paraćin. Savezni geološki zavod, Laboratorija za metode geološkog kartiranja Rudarsko, geološkog fakulteta, Vojnogegrafski institute, Beograd, Belgrade, Serbia. (Federal geological survey, Laboratory for geological mapping methods from Faculty of Mining and geology, Military Geographical Institute, Belgrade, Serbia.) (in Serbian).
  • 20. Duller GAT, 2015. Analyst User Manual v4.31.7. Aberystwyth Luminescence Research Laboratory, Aberystwyth University.
  • 21. Durcan JA, King GE and Duller GAT, 2015. DRAC: Dose Rate and Age Calculator for trapped charge dating. Quaternary Geochronology 28: 54–61, DOI 10.1016/j.quageo.2015.03.012.
  • 22. Fitzsimmons KE and Hambach U, 2014. Loess accumulation during the last glacial maximum: Evidence from Urluia, Southeastern Romania. Quaternary International 334–335: 74–85, DOI 10.1016/j.quaint.2013.08.005.
  • 23. Frechen M, 2003. Loess in Europe—mass accumulation rates during the Last Glacial Period. Quaternary Science Reviews 22(18–19): 1835–1857, DOI 10.1016/S0277-3791(03)00183-5.
  • 24. Fuchs M, Rousseau D-D, Antoine P, Hatté C, Gauthier C, Marković S and Zoeller L, 2008. Chronology of the Last Climatic Cycle (Upper Pleistocene) of the Surduk loess sequence, Vojvodina, Serbia. Boreas 37(1): 66–73, DOI 10.1111/j.1502-3885.2007.00012.x.
  • 25. Guerin G, Mercier N and Adamiec G, 2011. Dose-rate conversion factors: update. Ancient TL 29: 5–8. Haase D, Fink J,
  • 26. Haase G, Ruske R, Pécsi M, Richter H, Altermann M and Jäger K-D, 2007. Loess in Europe—its spatial distribution based on a European Loess Map, scale 1:2,500,000. Quaternary Science Reviews 26(9–10): 1301–1312, DOI 10.1016/j.quascirev.2007.02.003.
  • 27. Huntley DJ and Baril MR, 1997. The K content of the K-feldspars being measured in optical dating or in thermoluminescence dating. Ancient TL 15(1): 11–12.
  • 28. Jain M, Murray AS and Bøtter-Jensen L, 2003. Characterisation of bluelight stimulated luminescence components in different quartz samples: implications for dose measurement. Radiation Measurements 37(4–5): 441–449, DOI 10.1016/S1350-4487(03)00052-0.
  • 29. Kars RH, Reimann T, Ankjaergaard C and Wallinga J, 2014. Bleaching of the post-IR IRSL signal: new insights for feldspar luminescence dating: Feldspar luminescence dating. Boreas 43(4): 780–791, DOI 10.1111/bor.12082.
  • 30. Kostić N and Protić N, 2000. Pedology and mineralogy of loess profiles at Kapela-Batajnica and Stalać, Serbia. Catena (41): 217–227, DOI 10.1016/S0341-8162(00)00102-8.
  • 31. Kreutzer S, Fuchs M, Meszner S and Faust D, 2012a. OSL chronostratigraphy of a loess-palaeosol sequence in Saxony/Germany using quartz of different grain sizes. Quaternary Geochronology 10: 102–109, DOI 10.1016/j.quageo.2012.01.004.
  • 32. Kreutzer S, Schmidt C, Fuchs MC, Dietze M, Fischer M and Fuchs M, 2012b. Introducing an R package for luminescence dating analysis. Ancient TL 30(1): 1–8.
  • 33. Kreutzer S, Schmidt C, DeWitt R and Fuchs M, 2014. The a-value of polymineral fine grain samples measured with the post-IR IRSL protocol. Radiation Measurements 69: 18–29, DOI 10.1016/j.radmeas.2014.04.027.
  • 34. Krstić B, Rakić B, Veselinović M, Doloć D, Rakić M, Anđelković V and Baković V, 1978. Aleksinac. Savezni geološki zavod, Laboratorija za metode geološkog kartiranja Rudarsko - geološkog fakulteta, Vojnogeografski institute, Belgrade, Serbia. (Federal geological survey, Laboratory for geological mapping methods from Faculty of Mining and geology, Military Geographical Institute, Belgrade, Serbia.) (in Serbian).
  • 35. Leicher N, Zanchetta G, Sulpizio R, Giaccio B, Wagner B, Nomade S, Francke A and Del Carlo P, 2016. First tephrostratigraphic results of the DEEP site record from Lake Ohrid (Macedonia and Albania). Biogeosciences 13(7): 2151–2178, DOI 10.5194/bg-13-2151- 2016.
  • 36. Lindner H, Lehmkuhl F and Zeeden C, 2017. Spatial loess distribution in the eastern Carpathian Basin: a novel approach based on geoscientific maps and data. Journal of Maps 13(2): 173–181, DOI 10.1080/17445647.2017.1279083.
  • 37. Marković SB, Bokhorst MP, Vandenberghe J, McCoy WD, Oches EA, Hambach U, Gaudenyi T, Jovanović M, Zöller L, Stevens T and Machalett B, 2008. Late Pleistocene loess-palaeosol sequences in the Vojvodina region, north Serbia. Journal of Quaternary Science 23(1): 73–84, DOI 10.1002/jqs.1124.
  • 38. Marković SB, Hambach U, Catto N, Jovanović M, Buggle B, Machalett B, Zöller L, Glaser B and Frechen M, 2009. Middle and Late Pleistocene loess sequences at Batajnica, Vojvodina, Serbia. Quaternary International 198(1–2): 255–266, DOI 10.1016/j.quaint.2008.12.004.
  • 39. Marković SB, Timar-Gabor A, Stevens T, Hambach U, Popov D, Tomić N, Obreht I, Jovanović M, Lehmkuhl F, Kels H, Marković R and Gavrilov MB, 2014. Environmental dynamics and luminescence chronology from the Orlovat loess–palaeosol sequence (Vojvodina, northern Serbia). Journal of Quaternary Science 29(2): 189– 199, DOI 10.1002/jqs.2693.
  • 40. Marković SB, Stevens T, Kukla GJ, Hambach U, Fitzsimmons KE, Gibbard P, Buggle B, Zech M, Guo Z, Hao Q, Wu H, Dhand KO, Smalley IJ, Újvári G, Sümegi P, Timar-Gabor A, Veres D, Sirocko F, Vasiljević DA, Jary Z, Svensson A, Jović V, Lehmkuhl F, Kovács J and Svirčev Z, 2015. Danube loess stratigraphy — Towards a pan-European loess stratigraphic model. Earth-Science Reviews 148: 228–258, DOI 10.1016/j.earscirev.2015.06.005.
  • 41. Mejdahl V, 1979. Thermoluminescence Dating: Beta-Dose Attenuation in Quartz Grains. Archaeometry 21(1): 61–72, DOI 10.1111/j.1475-4754.1979.tb00241.x.
  • 42. Muhs DR, Bettis III EA, Aleinikoff JN, McGeehin JP, Beann J, Skipp G, Marshall BD, Roberts HM, Johnson WC and Benton R, 2008. Origin and paleoclimatic significance of late Quaternary loess in Nebraska: Evidence from stratigraphy, chronology, sedimentology, and geochemistry. GSA Bulletin 120(11–12): 13781407, DOI 10.1130/?B26221.1.
  • 43. Murray AS and Wintle AG, 2000. Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiation Measurements 32(1): 57–73, DOI 10.1016/S1350-4487(99)00253-X.
  • 44. Murray AS and Wintle AG, 2003. The single aliquot regenerative dose protocol: potential for improvements in reliability. Radiation Measurements 37(4–5): 377–381, DOI 10.1016/S1350- 4487(03)00053-2.
  • 45. Murray AS, Buylaert JP, Thomsen KJ and Jain M, 2009. The effect of preheating on the IRSL signal from feldspar. Radiation Measurements 44(5–6): 554–559, DOI 10.1016/j.radmeas.2009.02.004.
  • 46. Murray AS, Schmidt ED, Stevens T, Buylaert J-P, Marković SB, Tsukamoto S and Frechen M, 2014. Dating Middle Pleistocene loess from Stari Slankamen (Vojvodina, Serbia) — Limitations imposed by the saturation behaviour of an elevated temperature IRSL signal. CATENA 117: 34–42, DOI 10.1016/j.catena.2013.06.029.
  • 47. Obreht I, Buggle B, Catto N, Marković SB, Bösel S, Vandenberghe DAG, Hambach U, Svirčev Z, Lehmkuhl F, Basarin B, Gavrilov MB and Jović G, 2014. The Late Pleistocene Belotinac section (southern Serbia) at the southern limit of the European loess belt: Environmental and climate reconstruction using grain size and stable C and N isotopes. Quaternary International 334–335: 10–19, DOI 10.1016/j.quaint.2013.05.037.
  • 48. Obreht I, Zeeden C, Schulte P, Hambach U, Eckmeier E, Timar-Gabor A and Lehmkuhl F, 2015. Aeolian dynamics at the Orlovat loess– paleosol sequence, northern Serbia, based on detailed textural and geochemical evidence. Aeolian Research 18: 69–81, DOI 10.1016/j.aeolia.2015.06.004.
  • 49. Obreht I, Zeeden C, Hambach U, Veres D, Marković SB, Bösken J, Svirčev Z, Bačević N, Gavrilov MB and Lehmkuhl F, 2016. Tracing the influence of Mediterranean climate on Southeastern Europe during the past 350,000 years. Scientific Reports 6: 36334, DOI 10.1038/srep36334.
  • 50. Prescott JR and Hutton JT, 1994. Cosmic Ray Contributions to Dose Rates for Luminescence and ESR Dating - large depths and longterm time variations. Radiation Measurements 23(2–3): 497–500, DOI 10.1016/1350-4487(94)90086-8.
  • 51. Rakić MO, Hadižvuković M, Kalenić M, Marković V and Milovanović L, 1975. Kruševac. Savezni geološki zavod, Vojnogeografski institute, Belgrade, Serbia. (Federal geological survey, Military Geographical Institute, Belgrade, Serbia.) (in Serbian).
  • 52. RHMS of Serbia, 2016. Monthly and annual means, maximum and minimum values of meteorological elements for the period 1981 - 2010 in Kruševac. Republic Hydrometeorological Service of Serbia.
  • 53. Roberts HM, 2006. Optical dating of coarse-silt sized quartz from loess: Evaluation of equivalent dose determinations and SAR procedural checks. Radiation Measurements 41(7–8): 923–929, DOI 10.1016/j.radmeas.2006.05.021.
  • 54. Roberts HM, 2008. The development and application of luminescence dating to loess deposits: a perspective on the past, present and future. Boreas 37(4): 483–507, DOI 10.1111/j.1502- 3885.2008.00057.x.
  • 55. Satow C, Tomlinson EL, Grant KM, Albert PG, Smith VC, Manning CJ, Ottolini L, Wulf S, Rohling EJ, Lowe JJ, Blockley SPE and Menzies MA, 2015. A new contribution to the Late Quaternary tephrostratigraphy of the Mediterranean: Aegean Sea core LC21. Quaternary Science Reviews 117: 96–112, DOI 10.1016/j.quascirev.2015.04.005.
  • 56. Schmidt ED, Machalett B, Marković SB, Tsukamoto S and Frechen M, 2010. Luminescence chronology of the upper part of the Stari Slankamen loess sequence (Vojvodina, Serbia). Quaternary Geochronology 5(2–3): 137–142, DOI 10.1016/j.quageo.2009.09.006.
  • 57. Singarayer JS and Bailey RM, 2003. Further investigations of the quartz optically stimulated luminescence components using linear modulation. Radiation Measurements 37(4–5): 451–458, DOI 10.1016/S1350-4487(03)00062-3.
  • 58. Steffen D, Preusser F and Schlunegger F, 2009. OSL quartz age underestimation due to unstable signal components. Quaternary Geochronology 4(5): 353–362, DOI 10.1016/j.quageo.2009.05.015.
  • 59. Stevens T, Marković SB, Zech M, Hambach U and Sümegi P, 2011. Dust deposition and climate in the Carpathian Basin over an independently dated last glacial–interglacial cycle. Quaternary Science Reviews 30(5–6): 662–681, DOI 10.1016/j.quascirev.2010.12.011.
  • 60. Sun Y, Clemens SC, An Z and Yu Z, 2006. Astronomical timescale and palaeoclimatic implication of stacked 3.6-Myr monsoon records from the Chinese Loess Plateau. Quaternary Science Reviews 25(1–2): 33–48, DOI 10.1016/j.quascirev.2005.07.005.
  • 61. Thiel C, Buylaert J-P, Murray A, Terhorst B, Hofer I, Tsukamoto S and Frechen M, 2011. Luminescence dating of the Stratzing loess profile (Austria) – Testing the potential of an elevated temperature post-IR IRSL protocol. Quaternary International 234(1–2): 23–31, DOI 10.1016/j.quaint.2010.05.018.
  • 62. Thomsen KJ, Murray AS, Jain M and Bøtter-Jensen L, 2008. Laboratory fading rates of various luminescence signals from feldspar-rich sediment extracts. Radiation Measurements 43(9–10): 1474–1486, DOI 10.1016/j.radmeas.2008.06.002.
  • 63. Timar-Gabor A and Wintle AG, 2013. On natural and laboratory generated dose response curves for quartz of different grain sizes from Romanian loess. Quaternary Geochronology 18: 34–40, DOI 10.1016/j.quageo.2013.08.001.
  • 64. Timar-Gabor A, Vasiliniuc S, Vandenberghe DAG, Cosma C and Wintle AG, 2012. Investigations into the reliability of SAR-OSL equivalent doses obtained for quartz samples displaying dose response curves with more than one component. Radiation Measurements 47(9): 740–745, DOI 10.1016/j.radmeas.2011.12.001.
  • 65. Timar-Gabor A, Constantin D, Buylaert JP, Jain M, Murray AS and Wintle AG, 2015a. Fundamental investigations of natural and laboratory generated SAR dose response curves for quartz OSL in the high dose range. Radiation Measurements 81: 150–156, DOI 10.1016/j.radmeas.2015.01.013.
  • 66. Timar-Gabor A, Constantin D, Marković SB and Jain M, 2015b. Extending the area of investigation of fine versus coarse quartz optical ages from the Lower Danube to the Carpathian Basin. Quaternary International 388: 168–176, DOI 10.1016/j.quaint.2014.09.065.
  • 67. Újvári G, Varga A and Balogh-Brunstad Z, 2008. Origin, weathering, and geochemical composition of loess in southwestern Hungary. Quaternary Research 69(3): 421–437, DOI 10.1016/j.yqres.2008.02.001.
  • 68. Vandenberghe J, Markovič SB, Jovanovič M and Hambach U, 2014. Site-specific variability of loess and palaeosols (Ruma, Vojvodina, northern Serbia). Quaternary International 334–335: 86–93, DOI 10.1016/j.quaint.2013.10.036.
  • 69. Vasiliniuc S, Vandenberghe DAG, Timar-Gabor A, Panaiotu C, Cosma C and van den Haute P, 2012. Testing the potential of elevated temperature post-IR IRSL signals for dating Romanian loess. Quaternary Geochronology 10: 75–80, DOI 10.1016/j.quageo.2012.02.014.
  • 70. De Vivo B, Rolandi G, Gans PB, Calvert A, Bohrson WA, Spera FJ and Belkin HE, 2001. New constraints on the pyroclastic eruptive history of the Campanian volcanic Plain (Italy). Mineralogy and Petrology 73(1–3): 47–65, DOI 10.1007/s007100170010.
  • 71. Wacha L and Frechen M, 2011. The geochronology of the “Gorjanović loess section” in Vukovar, Croatia. Quaternary International 240(1–2): 87–99, DOI 10.1016/j.quaint.2011.04.010.
  • 72. Wintle AG and Murray AS, 2006. A review of quartz optically stimulated luminescence characteristics and their relevance in singlealiquot regeneration dating protocols. Radiation Measurements 41(4): 369–391, DOI 10.1016/j.radmeas.2005.11.001.
  • 73. Zeeden C, Kels H, Hambach U, Schulte P, Protze J, Eckmeier E, Marković SB, Klasen N and Lehmkuhl F, 2016. Three climatic cycles recorded in a loess-palaeosol sequence at Semlac (Romania) – implications for dust accumulation in south-eastern Europe. Quaternary Science Reviews 154: 130–142, DOI 10.1016/j.quascirev.2016.11.002.
  • 74. Zeeden C, Hambach U, Veres D, Fitzsimmons K, Obreht I, Bösken J and Lehmkuhl F, in press. Millennial scale climate oscillations recorded in the Lower Danube loess over the last glacial period. Palaeogeography, Palaeoclimatology, Palaeoecology, DOI 10.1016/j.palaeo.2016.12.029.
  • 75. Zhang J, Tsukamoto S, Nottebaum V, Lehmkuhl F and Frechen M, 2015. De plateau and its implications for post-IR IRSL dating of polymineral fine grains. Quaternary Geochronology 30: 147–153, DOI 10.1016/j.quageo.2015.02.003.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bd862609-d0a2-4d8c-8643-4604a441c1d9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.