Tytuł artykułu
Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Mitosis detection is an important step in pathology procedures in the context of cancer diagnosis and prognosis. Prevalent process for this task is by manually observing Hematox-ylin and Eosin (H & E) stained histopathology sections on glass slides through a microscope by trained pathologists. This conventional approach is tedious, error-prone, and has shown high inter-observer variability. With the advancement of computational technologies, automating mitosis detection by the use of image processing algorithms has attracted significant research interest. In the past decade, several methods appeared in the literature, addressing this problem and they have shown encouraging incremental progress towards a clinically usable solution. Mitosis count is an important parameter in grading of breast cancer and glioma, unlike other cancer types. Driven by the availability of multiple public datasets and open contests, most of the methods in literature address mitosis detection in breast cancer images. This paper is a comprehensive review of the methods published in the area of automated mitotic cell detection in H & E stained histopathology images of breast cancer in the last 10 years. We also discuss the current trends and future prospects of this clinically relevant task, augmenting humanity's fight against cancer.
Wydawca
Czasopismo
Rocznik
Tom
Strony
64--82
Opis fizyczny
Bibliogr. 132 poz., rys., tab., wykr.
Twórcy
autor
- Department of Computer Science and Engineering, National Institute of Technology Karnataka, Surathkal, India; Department of Computer Science and Engineering, The National Institute of Engineering, Mysuru, India
autor
- Department of Pathology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka, India
autor
- Department of Computer Science and Engineering, National Institute of Technology Karnataka, Surathkal, India
Bibliografia
- [1] WHO – cancer key facts; 2018 (Accessed 20 November 20 2020) https://www.who.int/news-room/fact-sheets/detail/ cancer.
- [2] Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: Cancer J Clin 2018;68(6):394–424.
- [3] Wardle J, Robb K, Vernon S, Waller J. Screening for prevention and early diagnosis of cancer. Am Psychol 2015;70(2):119.
- [4] Al-Janabi S, Huisman A, Van Diest PJ. Digital pathology: current status and future perspectives. Histopathology 2012;61(1):1–9.
- [5] Higgins C. Applications and challenges of digital pathology and whole slide imaging. Biotechn Histochem 2015;90 (5):341–7.
- [6] Al-Janabi S, Huisman A, Vink A, Leguit RJ, Offerhaus GJA, Ten Kate FJ, et al. Whole slide images for primary diagnostics of gastrointestinal tract pathology: a feasibility study. Human Pathol 2012;43(5):702–7.
- [7] Elston CW, Ellis IO. Pathological prognostic factors in breast cancer. i. the value of histological grade in breast cancer: experience from a large study with long-term follow-up. CW elston & IO ellis. histopathology 1991; 19; 403-410: Author commentary. Histopathology 2002;41(3a). 151–151.
- [8] Singletary SE, Allred C, Ashley P, Bassett LW, Berry D, Bland KI, et al. Revision of the american joint committee on cancer staging system for breast cancer. J Clin Oncol 2002;20(17):3628–36.
- [9] Brierley JD, Gospodarowicz MK, Wittekind C. TNM classification of malignant tumours. John Wiley & Sons; 2017.
- [10] Gleason DF, Mellinger GT. Prediction of prognosis for prostatic adenocarcinoma by combined histological grading and clinical staging. J Urol 1974;111(1):58–64.
- [11] Epstein JI, Allsbrook Jr WC, Amin MB, Egevad LL, Committee IG, et al. The 2005 international society of urological pathology (isup) consensus conference on gleason grading of prostatic carcinoma. Am J Surg Pathol 2005;29(9):1228–42.
- [12] Epstein JI, Egevad L, Amin MB, Delahunt B, Srigley JR, Humphrey PA. The 2014 international society of urological pathology (isup) consensus conference on gleason grading of prostatic carcinoma. Am J Surg Pathol 2016;40(2):244–52.
- [13] Bloom H, Richardson W. Histological grading and prognosis in breast cancer: a study of 1409 cases of which 359 have been followed for 15 years. Br J Cancer 1957;11(3):359.
- [14] Neumann B, Walter T, Hériché J-K, Bulkescher J, Erfle H, Conrad C, et al. Phenotypic profiling of the human genome by time-lapse microscopy reveals cell division genes. Nature 2010;464(7289):721–7.
- [15] Nourreddine S, Lavoie G, Paradis J, El Kadhi KB, Méant A, Aubert L, et al. Nf45 and nf90 regulate mitotic gene expression by competing with staufen-mediated mrna decay. Cell Rep 2020;31(7):107660.
- [16] Mahmoodian H, Ebrahimian L. Using support vector regression in gene selection and fuzzy rule generation for relapse time prediction of breast cancer. Biocybern Biomed Eng 2016;36(3):466–72.
- [17] Chen X, Zheng B, Liu H. Optical and digital microscopic imaging techniques and applications in pathology. Anal Cell Pathol 2011;34(1, 2):5–18.
- [18] Gilad T, Reyes J, Chen J-Y, Lahav G, Riklin Raviv T. Fully unsupervised symmetry-based mitosis detection in time-lapse cell microscopy. Bioinformatics 2019;35(15):2644–53.
- [19] Nie W, Yan Y, Hao T, Liu C, Su Y. Mitosis event recognition and detection based on evolution of feature in time domain. Mach Vision Appl 2018;29(8):1249–56.
- [20] Gupta K, Bhavsar A, Sao AK. Identification of hep-2 specimen images with mitotic cell patterns. Biocybern Biomed Eng 2020;40(3):1233–49.
- [21] Tonti S, Di Cataldo S, Macii E, Ficarra E. Unsupervised hep- 2 mitosis recognition in indirect immunofluorescence imaging. 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) 2015;8135–8.
- [22] Kausar T, Wang M, Idrees M, Lu Y. Hwdcnn: Multi-class recognition in breast histopathology with Haar wavelet decomposed image based convolution neural network. Biocybern Biomed Eng 2019;39(4):967–82.
- [23] Sun C, Li C, Zhang J, Rahaman MM, Ai S, Chen H, et al. Gastric histopathology image segmentation using a hierarchical conditional random field. Biocybern Biomed Eng 2020.
- [24] Eismann B, Krieger TG, Beneke J, Bulkescher R, Adam L, Erfle H, et al. Automated 3d light-sheet screening with high spatiotemporal resolution reveals mitotic phenotypes. J Cell Sci 2020;133(11).
- [25] Liu Y, Ren L, Cao X, Tong Y. Breast tumors recognition based on edge feature extraction using support vector machine. Biomed Signal Process Control 2020;58:101825.
- [26] Osman FM, Yap MH. Adjusted quick shift phase preserving dynamic range compression method for breast lesions segmentation. Informatics Med Unlocked 2020;100344.
- [27] Danch-Wierzchowska M, Borys D, Bobek-Billewicz B, Jarzab M, Swierniak A. Simplification of breast deformation modelling to support breast cancer treatment planning. Biocybern Biomed Eng 2016;36(4):531–6.
- [28] Paul A, Mukherjee DP. Mitosis detection for invasive breast cancer grading in histopathological images. IEEE Trans Image Process 2015;24(11):4041–54.
- [29] Fuchs TJ, Buhmann JM. Computational pathology: challenges and promises for tissue analysis. Comput Med Imaging Graph 2011;35(7–8):515–30.
- [30] Basavanhally A, Yu E, Xu J, Ganesan S, Feldman M, Tomaszewski J, et al. Incorporating domain knowledge for tubule detection in breast histopathology using o'callaghan neighborhoods. Medical Imaging 2011: Computer-Aided Diagnosis, vol. 7963; 2011. p. 796310.
- [31] Khan AM, Sirinukunwattana K, Rajpoot N. A global covariance descriptor for nuclear atypia scoring in breast histopathology images. IEEE J Biomed Health Informatics 2015;19(5):1637–47.
- [32] Das A, Nair MS, Peter SD. Sparse representation over learned dictionaries on the Riemannian manifold for automated grading of nuclear pleomorphism in breast cancer. IEEE Trans Image Process 2018;28(3):1248–60.
- [33] Das A, Nair MS, Peter SD. Kernel-based fisher discriminant analysis on the riemannian manifold for nuclear atypia scoring of breast cancer. Biocybern Biomed Eng 2019;39 (3):728–41.
- [34] Xu J, Zhou C, Lang B, Liu Q. Deep learning for histopathological image analysis: towards computerized diagnosis on cancers. Deep Learning and Convolutional Neural Networks for Medical Image Computing 2017;73–95.
- [35] Das A, Nair MS, Peter SD. Computer-aided histopathological image analysis techniques for automated nuclear atypia scoring of breast cancer: a review. J Digital Imaging 2020;1–31.
- [36] MITOS – dataset; 2012 (Accessed 20 November 2020) http://ludo17.free.fr/mitos_2012/dataset.html.
- [37] TUPAC – dataset; 2016 (Accessed 20 November 2020) http://tupac.tue-image.nl/node/3.
- [38] Veta M, Van Diest PJ, Willems SM, Wang H, Madabhushi A, Cruz-Roa A, et al. Assessment of algorithms for mitosis detection in breast cancer histopathology images. Med Image Anal 2015;20(1):237–48.
- [39] Roux L, Racoceanu D, Loménie N, Kulikova M, Irshad H, Klossa J, et al. Mitosis detection in breast cancer histological images an Icpr 2012 contest. J Pathol Informatics 2013;4.
- [40] Naghibi S, Teshnehlab M, Shoorehdeli MA. Breast cancer classification based on advanced multi dimensional fuzzy neural network. J Med Syst 2012;36(5):2713–20.
- [41] Dalwinder S, Birmohan S, Manpreet K. Simultaneous feature weighting and parameter determination of neural networks using ant lion optimization for the classification of breast cancer. Biocybern Biomed Eng 2020;40(1):337–51.
- [42] Li J-B, Yu Y, Yang Z-M, Tang L-L. Breast tissue image classification based on semi-supervised locality discriminant projection with kernels. J Med Syst 2012;36 (5):2779–86.
- [43] Huang M-L, Hung Y-H, Chen W-Y. Neural network classifier with entropy based feature selection on breast cancer diagnosis. J Med Syst 2010;34(5):865–73.
- [44] Singh BK. Determining relevant biomarkers for prediction of breast cancer using anthropometric and clinical features: a comparative investigation in machine learning paradigm. Biocybern Biomed Eng 2019;39(2):393–409.
- [45] Teot LA, Sposto R, Khayat A, Qualman S, Reaman G, Parham D. The problems and promise of central pathology review: development of a standardized procedure for the children's oncology group. Pediatr Dev Pathol 2007;10 (3):199–207.
- [46] Kaman E, Smeulders A, Verbeek P, Young I, Baak J. Image processing for mitoses in sections of breast cancer: a feasibility study. Cytometry: J Int Soc Anal Cytol 1984;5 (3):244–9.
- [47] Malon C, Miller M, Burger HC, Cosatto E, Graf HP. Identifying histological elements with convolutional neural networks. Proceedings of the 5th International Conference on Soft Computing As Transdisciplinary Science and Technology 2008;450–6.
- [48] Gallardo GM, Yang F, Ianzini F, Mackey M, Sonka M. Mitotic cell recognition with hidden Markov models. Medical Imaging 2004: Visualization, Image-Guided Procedures, and Display, vol. 5367; 2004. pp. 661–8.
- [49] Tao CY, Hoyt J, Feng Y. A support vector machine classifier for recognizing mitotic subphases using high-content screening data. J Biomol Screen 2007;12(4):490–6.
- [50] Liu A, Li K, Kanade T. Mitosis sequence detection using hidden conditional random fields. 2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro 2010;580–3.
- [51] Ten Kate T, Belien J, Smeulders A, Baak J. Method for counting mitoses by image processing in feulgen stained breast cancer sections. Cytometry: J Int Soc Anal Cytol 1993;14(3):241–50.
- [52] MITOS-ATYPIA – dataset; 2014 (Accessed 20 November 2020) https://mitos-atypia-14.grand-challenge.org/Dataset/.
- [53] Chen H, Dou Q, Wang X, Qin J, Heng PA. Mitosis detection in breast cancer histology images via deep cascaded networks. Thirtieth AAAI Conference on Artificial Intelligence 2016;1166–260.
- [54] Khan AM, Rajpoot N, Treanor D, Magee D. A nonlinear mapping approach to stain normalization in digital histopathology images using image-specific color deconvolution. IEEE Trans Biomed Eng 2014;61(6):1729–38.
- [55] Li X, Plataniotis KN. A complete color normalization approach to histopathology images using color cues computed from saturation-weighted statistics. IEEE Trans Biomed Eng 2015;62(7):1862–73.
- [56] Vahadane A, Peng T, Sethi A, Albarqouni S, Wang L, Baust M, et al. Structure-preserving color normalization and sparse stain separation for histological images. IEEE Trans Med Imaging 2016;35(8):1962–71.
- [57] Alirezazadeh P, Hejrati B, Monsef-Esfahani A, Fathi A. Representation learning-based unsupervised domain adaptation for classification of breast cancer histopathology images. Biocybern Biomed Eng 2018;38 (3):671–83.
- [58] Huang C-H, Lee H-K. Automated mitosis detection based on exclusive independent component analysis. Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012) 2012;1856–9.
- [59] Khan AM, El-Daly H, Rajpoot NM. A gamma-gaussian mixture model for detection of mitotic cells in breast cancer histopathology images. Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012) 2012;149–52.
- [60] Khan AM, El-Daly H, Rajpoot N. Ranpec: random projections with ensemble clustering for segmentation of tumor areas in breast histology images. Medical Image Understanding and Analysis 2012;17–23.
- [61] Vapnik V. The nature of statistical learning theory. Springer science & business media; 2013.
- [62] Malon C, Brachtel E, Cosatto E, Graf HP, Kurata A, Kuroda M, et al. Mitotic figure recognition: agreement among pathologists and computerized detector. Anal Cell Pathol 2012;35(2):97–100.
- [63] Sommer C, Fiaschi L, Hamprecht FA, Gerlich DW. Learning-based mitotic cell detection in histopathological images. Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012) 2012;2306–9.
- [64] Sommer C, Straehle C, Koethe U, Hamprecht FA. Ilastik: interactive learning and segmentation toolkit, in. 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro 2011;230–3.
- [65] Irshad H. Automated mitosis detection in histopathology using morphological and multi-channel statistics features. J Pathol Informatics 2013;4.
- [66] Tek FB. Mitosis detection using generic features and an ensemble of cascade adaboosts. J Pathol Informatics 2013;4.
- [67] Veta M, van Diest PJ, Pluim JP. Detecting mitotic figures in breast cancer histopathology images. Medical Imaging 2013: Digital Pathology, vol. 8676; 2013. p. 867607.
- [68] Irshad H, Gouaillard A, Roux L, Racoceanu D. Multispectral band selection and spatial characterization: application to mitosis detection in breast cancer histopathology. Comput Med Imaging Graph 2014;38(5):390–402.
- [69] Irshad H, Gouaillard A, Roux L, Racoceanu D. Spectral band selection for mitosis detection in histopathology. 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI) 2014;1279–82.
- [70] Lu C, Mandal M. Toward automatic mitotic cell detection and segmentation in multispectral histopathological images. IEEE J Biomed Health Informatics 2013;18(2):594–605.
- [71] Duda RO, Hart PE, Stork DG. Pattern classification. John Wiley & Sons; 2012.
- [72] Lu C, Mahmood M, Jha N, Mandal M. A robust automatic nuclei segmentation technique for quantitative histopathological image analysis. Anal Quant Cytol Histol 2012;34:296–308.
- [73] Irshad H, Jalali S, Roux L, Racoceanu D, Hwee LJ, Le Naour G, et al. Automated mitosis detection using texture, sift features and hmax biologically inspired approach. J Pathol Informatics 2013;4(Suppl).
- [74] Acton ST, Mukherjee DP. Scale space classification using area morphology. IEEE Trans Image Process 2000;9 (4):623–35.
- [75] Beevi KS, Nair MS, Bindu G. Detection of mitotic nuclei in breast histopathology images using localized acm and random kitchen sink based classifier. 2016 38th annual international conference of the IEEE Engineering in Medicine and Biology Society (EMBC) 2016;2435–9.
- [76] Nateghi R, Danyali H, Helfroush MS. Maximized inter-class weighted mean for fast and accurate mitosis cells detection in breast cancer histopathology images. J Med Syst 2017;41(9):146.
- [77] Nateghi R, Danyali H, SadeghHelfroush M, Pour FP. Automatic detection of mitosis cell in breast cancer histopathology images using genetic algorithm. 2014 21th Iranian Conference on Biomedical Engineering (ICBME) 2014;1–6.
- [78] Tashk A, Helfroush MS, Danyali H, Akbarzadeh M. An automatic mitosis detection method for breast cancer histopathology slide images based on objective and pixel-wise textural features classification. The 5th Conference on Information and Knowledge Technology 2013;406–10.
- [79] Roullier V, Lézoray O, Ta V-T, Elmoataz A. Multi-resolution graph-based analysis of histopathological whole slide images: application to mitotic cell extraction and visualization. Comput Med Imaging Graph 2011;35(7- 8):603–15.
- [80] Nateghi R, Danyali H, Sadegh Helfroush M, Tashk A. Intelligent cad system for automatic detection of mitotic cells from breast cancer histology slide images based on teaching-learning-based optimization. Comput Biol J 2014.
- [81] Tashk A, Helfroush MS, Danyali H, Akbarzadeh-Jahromi M. Automatic detection of breast cancer mitotic cells based on the combination of textural, statistical and innovative mathematical features. Appl Math Modell 2015;39 (20):6165–82.
- [82] Gandomi AH, Alavi AH. Krill herd: a new bio-inspired optimization algorithm. Commun Nonlinear Sci Numer Simul 2012;17(12):4831–45.
- [83] Rahimi A, Recht B. Weighted sums of random kitchen sinks: Replacing minimization with randomization in learning. Advances in Neural Information Processing Systems 2009;1313–20.
- [84] Giovannelli L, Ródenas JJ, Navarro-Jimenez JM, Tur M. Element stiffness matrix integration in image-based cartesian grid finite element method. International Symposium Computational Modeling of Objects Represented in Images 2014;304–15.
- [85] Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, et al. A survey on deep learning in medical image analysis 2017; 2017, arXiv:1702.05747.
- [86] Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, et al. A survey on deep learning in medical image analysis. Med Image Anal 2017;42:60–88.
- [87] Anwar SM, Majid M, Qayyum A, Awais M, Alnowami M, Khan MK. Medical image analysis using convolutional neural networks: a review. J Med Syst 2018;42(11):226.
- [88] Amin J, Sharif M, Gul N, Raza M, Anjum MA, Nisar MW, et al. Brain tumor detection by using stacked autoencoders in deep learning. J Med Syst 2020;44(2):32.
- [89] Zhao X-y, Wu X, Li F-f, Li Y, Huang W-h, Huang K, et al. The application of deep learning in the risk grading of skin tumors for patients using clinical images. J Med Syst 2019;43(8):283.
- [90] Kadam VJ, Jadhav SM, Vijayakumar K. Breast cancer diagnosis using feature ensemble learning based on stacked sparse autoencoders and softmax regression. J Med Syst 2019;43(8):263.
- [91] Wang H, Jiang C, Bao K, Xu C. Recognition and clinical diagnosis of cervical cancer cells based on our improved lightweight deep network for pathological image. J Med Syst 2019;43(9):301.
- [92] Ramzan F, Khan MUG, Rehmat A, Iqbal S, Saba T, Rehman A, et al. A deep learning approach for automated diagnosis and multi-class classification of alzheimer's disease stages using resting-state fmri and residual neural networks. J Med Syst 2020;44(2):37.
- [93] Gurovich Y, Hanani Y, Bar O, Nadav G, Fleischer N, Gelbman D, et al. Identifying facial phenotypes of genetic disorders using deep learning. Nat Med 2019;25(1):60–4.
- [94] Wu J. Introduction to convolutional neural networks, vol. 5. National Key Lab for Novel Software Technology, Nanjing Univ, China; 2017. p. 23.
- [95] Ciresan DC, Giusti A, Gambardella LM, Schmidhuber J. Mitosis detection in breast cancer histology images with deep neural networks. International Conference on Medical Image Computing and Computer-Assisted Intervention 2013;411–8.
- [96] Giusti A, Caccia C, Ciresari DC, Schmidhuber J, Gambardella LM. A comparison of algorithms and humans for mitosis detection. 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI) 2014;1360–3.
- [97] Yu B, Willis M, Sun P, Wang J. Crowdsourcing participatory evaluation of medical pictograms using amazon mechanical turk. J Med Internet Res 2013;15(6):e108.
- [98] Celi LA, Ippolito A, Montgomery RA, Moses C, Stone DJ. Crowdsourcing knowledge discovery and innovations in medicine. J Med Internet Res 2014;16(9):e216.
- [99] Gurari D, Theriault D, Sameki M, Isenberg B, Pham TA, Purwada A, et al. How to collect segmentations for biomedical images? a benchmark evaluating the performance of experts, crowdsourced non-experts, and algorithms. 2015 IEEE Winter Conference on Applications of Computer Vision 2015;1169–76.
- [100] Albarqouni S, Baur C, Achilles F, Belagiannis V, Demirci S, Navab N. Aggnet: deep learning from crowds for mitosis detection in breast cancer histology images. IEEE Trans Med Imaging 2016;35(5):1313–21.
- [101] Chen H, Wang X, Heng PA. Automated mitosis detection with deep regression networks. 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI) 2016;1204–7.
- [102] Chen L-C, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Semantic image segmentation with deep convolutional nets and fully connected crfs; 2014, arXiv:1412.7062.
- [103] Wollmann T, Rohr K. Deep residual Hough voting for mitotic cell detection in histopathology images. 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017) 2017;341–4.
- [104] Li C, Wang X, Liu W, Latecki LJ. Deepmitosis: mitosis detection via deep detection, verification and segmentation networks. Med Image Anal 2018;45:121–33.
- [105] Wahab N, Khan A, Lee YS. Two-phase deep convolutional neural network for reducing class skewness in histopathological images based breast cancer detection. Comput Biol Med 2017;85:86–97.
- [106] Cai D, Sun X, Zhou N, Han X, Yao J. Efficient mitosis detection in breast cancer histology images by rcnn. 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019) 2019;919–22.
- [107] Romo-Bucheli D, Janowczyk A, Gilmore H, Romero E, Madabhushi A. A deep learning based strategy for identifying and associating mitotic activity with gene expression derived risk categories in estrogen receptor positive breast cancers. Cytometry Part A 2017;91 (6):566–73.
- [108] Jiménez G, Racoceanu D. Deep learning for semantic segmentation versus classification in computational pathology: application to mitosis analysis in breast cancer grading. Front Bioeng Biotechnol 2019;7:145.
- [109] Ren S, He K, Girshick R, Sun J. Faster r-cnn: Towards real-time object detection with region proposal networks. Advances in Neural Information Processing Systems 2015;91–9.
- [110] Shaban MT, Baur C, Navab N, Albarqouni S. Staingan: stain style transfer for digital histological images. 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019) 2019;953–6.
- [111] Li Z, Peng C, Yu G, Zhang X, Deng Y, Sun J. Light-head r-cnn: in defense of two-stage object detector; 2017, arXiv:1711.07264.
- [112] He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2016;770–8.
- [113] Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks. Commun ACM 2017;60(6):84–90.
- [114] Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation. International Conference on Medical Image Computing and Computer-Assisted Intervention 2015;234–41.
- [115] Malon CD, Cosatto E. Classification of mitotic figures with convolutional neural networks and seeded blob features. J Pathol Informatics 2013;4.
- [116] Wang H, Roa AC, Basavanhally AN, Gilmore HL, Shih N, Feldman M, et al. Mitosis detection in breast cancer pathology images by combining handcrafted and convolutional neural network features. J Med Imaging 2014;1(3):034003.
- [117] Saha M, Chakraborty C, Racoceanu D. Efficient deep learning model for mitosis detection using breast histopathology images. Comput Med Imaging Graph 2018;64:29–40.
- [118] Maas AL, Hannun AY, Ng AY. Rectifier nonlinearities improve neural network acoustic models. Proc ICML vol 30 2013;3.
- [119] Beevi KS, Nair MS, Bindu G. Automatic mitosis detection in breast histopathology images using convolutional neural network based deep transfer learning. Biocybern Biomed Eng 2019;39(1):214–23.
- [120] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition; 2014, arXiv:1409.1556.
- [121] Khan AM, Rajpoot N, Treanor D, Magee D. A nonlinear mapping approach to stain normalization in digital histopathology images using image-specific color deconvolution. IEEE Trans Biomed Eng 2014;61(6):1729–38.
- [122] Mahmood T, Arsalan M, Owais M, Lee MB, Park KR. Artificial intelligence-based mitosis detection in breast cancer histopathology images using faster r-cnn and deep cnns. J Clin Med 2020;9(3):749.
- [123] Beevi KS, Nair MS, Bindu G. A multi-classifier system for automatic mitosis detection in breast histopathology images using deep belief networks. IEEE J Transl Eng Health Med 2017;5:1–11.
- [124] Das DK, Dutta PK. Efficient automated detection of mitotic cells from breast histological images using deep convolution neutral network with wavelet decomposed patches. Comput Biol Med 2019;104:29–42.
- [125] Dalle J-R, Leow WK, Racoceanu D, Tutac AE, Putti TC. Automatic breast cancer grading of histopathological images. 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2008;3052–5.
- [126] Grand challenges; 2012 (Accessed 20 November 2020) https://grand-challenge.org/.
- [127] Bertram CA, Aubreville M, Marzahl C, Maier A, Klopfleisch R. A large-scale dataset for mitotic figure assessment on whole slide images of canine cutaneous mast cell tumor. Sci Data 2019;6(1):1–9.
- [128] Kermani TA, Kermani IA, Faham Z, Dolatkhah R. Ki-67 status in patients with primary breast cancer and its relationship with other prognostic factors. Biomed Res Ther 2019;6(2):2986–91.
- [129] Shokouh TZ, Ezatollah A, Barand P. Interrelationships between ki67, her2/neu, p53, er, and pr status and their associations with tumor grade and lymph node involvement in breast carcinoma subtypes: retrospective- observational analytical study. Medicine 2015;94(32).
- [130] Alheejawi S, Mandal M, Berendt R, Jha N. Automated melanoma staging in lymph node biopsy image using deep learning. 2019 IEEE Canadian Conference of Electrical and Computer Engineering (CCECE) 2019;1–4.
- [131] Senaras C, Niazi MKK, Sahiner B, Pennell MP, Tozbikian G, Lozanski G, et al. Optimized generation of high-resolution phantom images using cgan: application to quantification of ki67 breast cancer images. PLOS ONE 2018;13(5).
- [132] Saha M, Chakraborty C, Arun I, Ahmed R, Chatterjee S. An advanced deep learning approach for ki-67 stained hotspot detection and proliferation rate scoring for prognostic evaluation of breast cancer. Sci Rep 2017;7(1):1–14.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bd7ff5fc-aeea-4e15-83e7-e52c763b6700