PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of Physico-Chemical Properties of Submerged Arc Welding Fluxes on Pipeline Steel - A Brief Review

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Pipeline welding is an integral part of oil and gas exploration industries. Often the welded joint failures were due to lack of weld quality, improper heat treatment and even poor workmanship. Further, the use of new material in pipeline industry puts focus on a better understanding of qualifying requirements of welding for reducing the failures in future. This necessitates the need for development and design of suitable welding fluxes for joining these materials. In this paper an attempt is made to study the effects of submerged arc welding fluxes on weldability as well as structural integrity issues in pipeline steels. Physicochemical and thermophysical properties of submerged arc fluxes widely affects the mechanical behaviour of pipeline steels. This paper presents an overview of the role of welding parameters, flux composition, cooling rate, slag behaviour and physicochemical properties of slag on final welded joint properties such as tensile strength, impact toughness etc. during submerged arc welding.
Twórcy
  • Chandigarh University, Institute of Engineering, Mechanical Engineering Department, Mohali-140413, Punjab, India
  • University Centre for Research & Development, Chandigarh University, Mohali-140413, Punjab, India
  • MED, IIT Jodhpur, India
Bibliografia
  • [1] J.M. Grey, An independent view of linepipe and linepipe steel for high strength pipelines, Microalloying International, LP, Houston, Texas, X80 pipeline cost workshop 1, 20 (2002).
  • [2] P. John, X80 Line pipe for small diameter (DN450 and smaller) high strength pipelines. Conference preprints, Australian Pipeline Industry Association Research and Standards Committee 2, 30 (2002).
  • [3] Tasak, Edmund, Ziewiec, Aneta, Spawalnosc materialow konstrukcyjnych. In: Spawalnosc stali. Wydawnictwo JAK. Krakow. 1, 11 (2009).
  • [4] P. John, X80 linepipe for large diameter high strength pipelines, Conference preprints, Australian Pipeline Industry Association Research and Standards Committee 2, 12 (2002).
  • [5] S.R. Nathan, V. Balasubramanian, S. Malarvizhi, A.G. Rao, Effect of welding processes on mechanical and microstructural characteristics of high strength low alloy naval grade steel joints, Defence Technology 11, 308-317 (2015).
  • [6] K. Akao, T. Ishihara, T. Kitada, Y. Nishino, N. Okuda, Improvement of Notch Toughness and Soundness in Longitudinal Seam weld of Line pipe, Trans. ISIJ 26, 379-385 (1985).
  • [7] J. Palm, Shielded Metal Arc Welding Consumables for Advanced High Strength Steels, Work performed under Contract N00014- 89-J-3170, annual Progress Report.
  • [8] P.D. Hodgson, S.H. Zahiri, J.J. Whale, ISIJ Int. 44, 1224 (2004).
  • [9] D.S. Ivani, Bott, F.G. Luis, S. De, C.G. Jose, Metallurgical and Materials Transactions A 36, 443, (2005).
  • [10] H. Tamehiro, H. Asahi, T. Hara, Y. Terada, United States Patent 6264760 1, (1999).
  • [11] V. Philip, Specification for line pipe, ISO 3183:2007 (modified), petroleum and natural gas industries-steel pipe for pipeline transportation system, ANSI/API specification 5L, forty-fourth edition 1, (2007).
  • [12] P. Venton, Design Constraints against the use of X80 for Australian Pipelines, Australian Pipeline Industry Association Research and Standards Committee 1, (2002).
  • [13] P. Bilston, M. Sarapa, International use of X80 Pipelines, GHD Pty Ltd Australia, Australian Pipeline Industry Association Research and Standards Committee 2, (2002).
  • [14] H.G. Hillenbrand, C.J. Heckmann, K.A. Niederhoff, X80 line pipe for large-diameter high strength pipelines, Germany Mannesmann Forschungsinstitut 1, (2002).
  • [15] H. Engelmann, A. Engel, P.A. Peters, First use of large-diameter pipes of the steel GRS 550 TM (X80); 3R International 25, 182-193, (1986).
  • [16] V. Chaudhari, H.R. Ritzmann, G. Wellnitz, German gas pipeline first to use new generation line pipe, Oil & Gas Journal 1, (1995).
  • [17] H.G. Hillenbrand, K.A. Niederhoff, G. Hauck, E. Perteneder, G. Wellnitz, Procedure considerations for welding X80 line pipe established, Oil & Gas Journal 1, (1997).
  • [18] C.S. Chai, T.W. Eagar, The effect of SAW parameters on weld metal chemistry. Weld J. 59, 93s-98s (1980).
  • [19] S.H. Hashemi, D. Mohammadyani, Characterisation of weldment hardness, impact energy and microstructure in API X65 steel, International Journal of Pressure Vessels and Piping 98, 8-15, (2012).
  • [20] F. Singer, S. Singer, Enciclopedia de la Química Industrial Tomo, Cerámica Industrial 9, 84-314, (1979).
  • [21] M.L.E. Davis, N. Bailey, Evidence of Inclusion Chemistry for Element Transfer Submerged Arc Welding, Welding Research Supp. 70, 5 (1991).
  • [22] B. Beidokhti, R. Pouriamanesh, Effect of Filler Metal on Mechanical Properties of HSLA Welds, Welding Journal 94, 334-341 (2015).
  • [23] R.D.Thomas, Submerged-Arc Welding of HSLA Steels, Metal Progress 111, 30-36 (1977).
  • [24] J.T. McGrath, R.S. Chandel, R.F. Orr, J.A.Gianetto, A Review of Factors Affecting the Structural Integrity of Weldments in Heavy Wall Reactor Vessels, Canadian Metallurgical Quarterly 28, 75-83 (1989).
  • [25] J.H. Palm, How fluxes determine the metallurgical properties of submerged arc welds 2, 358-360 (1972).
  • [26] C.S. Chai, T.W. Eagar, Slag metal reactions in binary CaF2-metal oxide welding fluxes, Welding Research Supp. 1, 229-232 (1982).
  • [27] K. Bang, C. Park, H.C. Jung, J.B. Lee, Effects of Flux Composition on the Element Transfer and Mechanical Properties of Weld Metal in Submerged Arc Welding, Met. Mater. Int. 15, 471-477 (2009).
  • [28] Y. Peng, W. Chen, Z. Xu, Study of high toughness ferrite wire for submerged arc welding of pipeline steel, Mat. Charact. 47, 67-73 (2001).
  • [29] S. Jindal, R. Chhibber, N.P. Mehta, P. Kumar, Design and Development of Fluxes for Submerged Arc Welding of HSLA Steel, International Journal of Surface Engineering & Materials Technology 3, 2249-7250 (2013).
  • [30] D. Bhandari, R. Chhibber, N. Arora, R. Mehta, Investigation of TiO2-SiO2-CaO-CaF2 based electrode coatings on weld metal chemistry and mechanical behavior of bimetallic welds, Journal of Manuf. Proc. 23, 61-74 (2016).
  • [31] S. Brijpal, K.A. Zahid, S.N. Arshad, M. Sachin, Effect of CaF2, FeMn and NiO additions on impact strength and hardness in submerged arc welding using developed agglomerated fluxes, Journal of Alloys and Compounds 1, 20-30 (2016).
  • [32] K. Ajay, H. M. Singh, M. Sachin, Modelling and Analysis by response surface methodology of hardness for submerged arc welded joints using developed agglomerated fluxes, Indian Journal of Engineering & Material Science 19, 379-385 (2012).
  • [33] S. Jindal, R. Chhibber, N. P. Mehta, Effect of flux constituents and basicity index on mechanical properties and microstructural evolution of submerged arc welded high strength low alloy steel, Mat. Sci. Forum 738, 242-246 (2013).
  • [34] P. Kanjilal, T.K. Pal, S.K. Majumdar, Combined effect of flux and welding parameters on chemical composition and mechanical properties of submerged arc weld metal, Journal of Mat. Proc. Techn. 171, 223-231 (2006).
  • [35] B. Beidokhti, A.H. Koukabi, A. Dolati, Influences of titanium and manganese on high strength low alloy SAW weld metal properties, Mat. Charact. 6, 225-233 (2009).
  • [36] D. Wei, G. Xiuhua, Z. Dewen, D. Linxiu, W. Di, W. Guodong, Effect of Ti-enriched Carbonitride on Microstructure and Mechanical Properties of X80 Pipeline Steel, Journal of Mater. Sci. Technol. 26, 803-809 (2010).
  • [37] B.V. Trindade, C.D. Payao, J. Souza, G.F.L. Paranhos, The role of addition of Ni on the microstructure and the mechanical behaviour of C-Mn weld metals, Exacta 5, 177-183, (2007).
  • [38] T.H. North, H.B. Bell, A. Koukabi, I. Craig, Notch Toughness of Low Oxygen Content Submerged Arc Deposits, Welding Journal Supp. 1, 343-354 (1979).
  • [39] A.R. Bhatti, M.E. Saggese, D.N. Hawkins, J.A. Whiteman, M.S. Golding, Analysis of Inclusions in Submerged Arc Welds in Micro alloyed Steels, Welding Research Supp. 1, 224-230 (1984).
  • [40] J.H. Kim, R.H. Frost, D.L. Olson, M. Blander, Effect of Electrochemical Reactions on Submerged Arc Weld Metal Compositions, Welding Research Supp. 1, 446-454 (1990).
  • [41] Y. Yoshino, R.D. Stout, Effect of Microalloys on the Notch Toughness of Line Pipe Seam Welds, Welding Research Supp. 2, 59-68 (1979).
  • [42] B. Singh, Z.A. Khan, A.N. Siddiquee, Review on effect of flux composition on its behavior and bead geometry in submerged arc welding, Journal of Mech. Engg. Res. 5, 123-127 (2013).
  • [43] D.D. Schwemer, D.L. Olson, D.L. Williamson, Relationship of weld penetration to the welding flux, Welding Research Supp. 2, 153-160 (1979).
  • [44] J.D. Plessis, M.D. Toi, P.C. Pistorius, Control of diffusible weld metal hydrogen through flux chemistry modification, Weld J. 86, 273s-280 (2007).
  • [45] N.D. Pandey, A. Bharti, S.R. Gupta, Effect of submerged arc welding parameters and fluxes on element transfer behaviour and weld-metal chemistry, J. Mater. Process. Tech. 40, 195-211 (1994).
  • [46] P. Kanjilal, S.K. Majumdar, T.K. Pal, Prediction of acicular ferrite from flux ingredients in submerged arc weld metal of C-Mn steel, ISIJ Int. 45, 876-885 (2005).
  • [47] U. Mitra, T.W. Eagar, Slag metal reactions during submerged arc welding of alloy steels, Metall. Trans. A. 15, 217-227 (1984).
  • [48] J.L. Wilson, G.E. Claussen, C.E. Jackson, The Effect of 12R Heating of Electrode Melting Rate, Welding Journal 35, 1-8 (1980).
  • [49] C.E. Jackson, A.E. Shrubsall, 1953, Control of Penetration and Melting Ratio with Welding Techniques, Welding J. 32, 172-178 (1953).
  • [50] H.E. Janzen, An Investigation of the SiO,-MnO-CaO/CaF2 Welding Flux System, Thesis, Colorado School of Mines 1, 1-7 (1977).
  • [51] M. Bertung, Influence on DC Generators and Welding Transformers on Arc Stability and Electrode Burn-Off Rate, British Welding Journal 847, (1964).
  • [52] C.E. Jackson, The Science of Arc Welding-Part I, Welding Journal, Research Suppl. 39, 129-140 (1960).
  • [53] B.M. Patchett, Some Influences of Slag Composition on Heat Transfer and Arc Stability, Welding Journal 53, 203-210 (1974).
  • [54] C.A. Butler, C.E. Jackson, Submerged - Arc Welding Characteristics of the CaO-TiO,-SiO, System, Welding Journal 46, 448-456 (1967).
  • [55] Hrivnak, Weldability of modern steel materials, ISIJInt. 35, 1148-1156 (1955).
  • [56] S. Bott, G.D Souza, J.C.G, Teixeira, P.R. Rios, Highstrength steel development for pipelines: a Brazilian perspective, Metall. Mater. Trans. A 36A, 443-454 (2005).
  • [57] Y. Terada et al., High-strength linepipes with excellent HAZ toughness, Nippon Steel Tech. Rep. 90, 88-93 (2004).
  • [58] C. Liu, Z.B. Zhao, D.O. Northwood, Mechanical properties of the heat-affected zone in a bainitic high strength low alloy steel, Mater. Sci. Technol. 18, 1325-1328 (2002).
  • [59] S. Aihara, K. Okamoto, Influence of local brittle zones on HAZ toughness of TMCP steels, Proc. AWS Int. Conf. on ‘Metallurgy, welding and qualification of microalloyed (HSLA) steel weldments’, Houston, TX, USA, AWS 402, 125-131 (1990).
  • [60] C. Liu, S.D. Bhole, Challenges and developments in pipeline weldability and mechanical properties, Sci. and Tech. of Weld. and Joining 2, 181 (2013).
  • [61] T.H. North, H.B. Bell, A. Koukabi, I. Craig, Notch toughness of low Oxygen content Submerged arc deposit., Weld. Supp. J. 1, (1979).
  • [62] Y. Ito, M. Nakanishi, Study on Charpy Impact Properties of Weld Metal in Submerged Arc Welding, IIW Doc. XIIA75, 1-50 (1975).
  • [63] A. Shiga, P.L. Imura, J. Tsuboi, Effects on Niobium and Vanadium on Toughness of Submerged Arc Weld Metal, IIW Doc. IX-1049-77, 2, 1-21 (1977).
  • [64] C.L. Choi, D.C. Hill, A Study of Microstructural Progression in As-Deposited Weld Metal, Welding Journal 57, 232-236 (1978).
  • [65] D.J. Abson, R.E. Dolby, P.A. M. Hart, Role of Nonmetallic Inclusions in Ferrite Nucleation carbon Steel Weld Metals, International Conference on Trends in Steels and Consumables for Welding, London 25, 75-89 (1978).
  • [66] A. McLean, D.A.R. Kay, Control of Inclusions in High-Strength Low-Alloy Steels, Microalloying 75, 215-231 (1975).
  • [67] T. Gladman, D. Dulieu, I. Mclvor, Structure-Property Relationships in High-Strength Microalloyed Steels, Microalloying 76, 32-54 (1975).
  • [68] S. Liu, D.L. Olson, The role of inclusions in controlling HSLA steel weld microstructures, Weld. J. Suppl. Res. 65, 139-141 (1986).
  • [69] G.M Evans, Microstructure and properties of ferritic steel welds containing Ti and B, Weld. J. Supplement Res. 75, 251-254 (1996).
  • [70] J.M. Dowling, J.M. Corbett, H.W. Kerr, Inclusion phases and the nucleation of acicular ferrite in submerged-arc welds in highstrength low alloy steels, Metall. Trans. A. 17, 1613-1618 (1986).
  • [71] C.V Eijk, O. Grong, J. Hjelen, Quantification of inclusionsstimulated ferrite nucleation in wrought steel using the SEMEBSD technique, Proceedings of the International Conference on SolidSolid Phase Transformations ’99 (JIMIC-3), Kyoto, Japan 2, 1999.
  • [72] J.E. Ramirez, Characterization of high-strength steel weld metals: chemical composition, microstructure, and non-metallic inclusions. Weld J. 87, 65-75 (2008).
  • [73] N. Cordea, Niobium- and Vanadium- Containing Steels for Pressure Vessel Service, Welding Research Council Bulletin 203, 1-5 (1975).
  • [74] Y. Yoshino, R.D. Stot, Effect of Microalloys on the Notch Toughness of Line Pipe Seam welds, Welding Res. Supp. 1, 2-5 (1979).
  • [75] E.G. Signes, J.C. Baker, Effect of Columbium and Vanadium on the Weldability of HSLA Steels, Welding Research Council 2, 1-8 (1979).
  • [76] H. Terashima, J. Tsuboi, 1976. Hydrogen in submerged arc weld metal produced with agglomerated flux, Welding Journal of Japan 45, 28-33 (1976).
  • [77] D.J. Allen, B. Chew, P. Harris, The Formation of Chevron Cracks in Submerged Arc Weld Metal, Welding Res. Supp. 2, 212-221 (1992).
  • [78] T. Lau, G.C. Weatherly, A. Lean, Gas/Metal/Slag reactions in submerged arc welding using CaO-Al2O3 based fluxes, Welding Res. Supp. 1, 31-38 (1986).
  • [79] K. Bang, C. Park, H. Jung, J. Lee, Effects of flux composition on the element transfer and mechanical properties of weld metal in submerged arc welding, Metals and Mat. Int. 15, 471-477 (2009).
  • [80] I. Datta, M. Parekh, Filler metal flux basicity determination using optical basicity index, Welding Res. Supp. 2, 68-76 (1989).
  • [81] C.B. Dallam, S. Liu, D.L. Olson, Flux Composition Dependence of Microstructure and Toughness of Submerged Arc HSLA Weldments, Weld. Res. Supp. 1, 140-152 (1985).
  • [82] H.Q. Yan, K.M. Wu, H.H. Wang, L. Li, Y.Q. Yin, N.C. Wu, Effect of fast cooling on microstructure and toughness of heat affected zone in high strength offshore steel, Science and Technology of Welding and Joining 19, 355-360 (2014).
  • [83] H. Peter et al., Weldability of Microalloyed Steels, Microalloying 75 Proceedings, Union Carbide 2, 540-551 (1977).
  • [84] A. Gharavol, M.H.H. Sabzevar, A. Haerian, Influence of copper content on the microstructure and mechanical properties of multipass MMA low alloy steel weld metal deposits, 2009, Materials & Design 30, 1902-1912 (2009).
  • [85] M. Zhoa, K. Yang, Strengthening and improvement of sulfide stress cracking resistance in acicular ferrite pipeline steels by nano-sized carbonitrides, Scripta Materialia 52, 881-886 (2005).
  • [86]. B. Filho, W.W. Carvalho, M. Strangwood, Influence of alloying elements on the microstructure and inclusion formation in HSLA multipass welds, Mat. Charact. 58, 29-39 (2007).
  • [87] Y. Peng, W. Chen, Z. Xu, Study of high toughness ferrite wire for submerged arc welding of pipeline steel, Mater. Charact. 47, 67-76 (2001).
  • [88] S.D. Bhole, J.B. Nemade, L. Collins, C. Liu, Influence of nickel and molybdenum additions on weld metal toughness in submerged arc welded HSLA line-pipe steel. Journal of Materials Processing and Technology 173, 92-100 (2006).
  • [89] B. Beidokhti, A.H. Koukabi, A. Dolati., Influence of titanium and manganese on high strength low alloy SAW weld metal properties, Mat. Charact. 60, 225-23 (2009).
  • [90] M.C. Zhao, Y.Y. Shan, E.R. Xiao, K. Yang, 2 Acicular ferrite formation during hot plate rolling for pipeline steels, Mater. Sci Technol. 19, 355-359 (2003).
  • [91] B. Hwang, S. Lee, Y. M. Kim, N.J. Kim, J.Y. Yoo, Correlation of rolling condition, microstructure and low-temperature toughness of X70 pipeline steels, Metall. Mater. Trans. A 36, 1793-1805 (2005).
  • [92] L. Sharma, R. Chhibber, Design of CaO-SiO2-CaF2 and CaOSiO2-Al2O3 based submerged arc fluxes for series of bead on plate pipeline steel welds : Effect on Carbon and Manganese content, Grain size and Microhardness, Journal of Pressure vessel Technology, ASME 141, 1-10 (2019).
  • [93] S.H. Hashemi, D. Mohammadyani, Characterisation of weldment hardness, impact energy and microstructure in API X65 steel, International Journal of Pressure Vessels and Piping 98, 8-15 (2012).
  • [94] E. Surian, R. de. Rissone, De. Vedia, Influence of molybdenum on ferritic high-strength SMAW all-weld-metal properties, Weld J. 84, 53-62 (2005).
  • [95] G. de. Souza et al., Microstructural analysis of single pass 2.25% Cr-1.0% Mo steel weld metal with different manganese amounts. Mater Charact. 55, 19-27 (2005).
  • [96] M.C. Zhao, K. Yang, F.R. Xiao, Y. Shan, Continuous cooling transformation of undeformed and deformed low carbon pipeline steels, Mater. Sci. Eng. A. 355, 126-36 (2003).
  • [97] S.S. Babu, Mechanism of acicular ferrite in weld deposits, Current Opinion in Solid State and Mat. Sci. 8, 267-278 (2004).
  • [98] K.L. Chang et al., Investigations of microstructure and phosphorus distribution in BOF slag, China Steel. Tech. Rep. 21, 1-6 (2008).
  • [99] J.C.F. Jorge, L.F.G. Souza, J.M. ARebello, The effect of chromium on the microstructure/toughness relationship of C-Mn welds metal deposits, Mater. Charact. 47, 195-205 (2001).
  • [100] B. Beidokhti, R. Pouriamanesh, Effect of Filler Metal on Mechanical Properties of HSLA steel Welds, Welding Journal 94, 1-9 (2015).
  • [101] K.C. Mills, The estimation of slag properties, Southern African Pyrometallurgy 1, 2-12 (2011).
  • [102] K.C. Mills, The influence of structure on the physico-chemical properties of slags. ISIJ International 33, 148-156 (1993).
  • [103] T. Coetsee, F.D. Bruin, Chemical Interaction of Cr-Al-Cu Metal Powders in Aluminum-Assisted Transfer of Chromium in Submerged Arc Welding of Carbon Steel, Processes 10 (2), 296 (2022).
  • [104] C. Wang, Z. Wang, J. Yang, Revealing the Viscosity-Structure Relationship of SiO2-MnO-CaO Fluxes Geared Toward High Heat Input Submerged Arc Welding, Metallurgical and Materials Transactions B 53, 693-701 (2022).
  • [105] D. Nimker, R. Wattal, Zero Waste Concept: Recycling of Slag to Use as Flux in Submerged Arc Welding, Lecture Notes in Advances in Mechanical and Materials Technology, (LNME) 641-647 (2022).
  • [106] K.C. Mills, A.B. Fox, R.P. Thackry, Z. Li, The performance and properties of mould fluxes, VII International Conference on Molten Slags Fluxes and Salts, The South African Institute of Mining and Metallurgy 1, 1-7 (2004).
  • [107] M. Hayashi et al., Effect of ionicity of nonbridging oxygen ions on thermal conductivity of molten alkali silicates, Physics and Chemistry of Glasses - European Journal of Glass Science and Technology Part B 42, 6-11 (2001).
  • [108] G.H. Zhang, K.C. Chou, Simple method for estimating the electrical conductivity of oxide melts with optical basicity, Metallurgical and Materials Transactions B 41, 131-136 (2010).
  • [109] D. Bhandari, R. Chhibber, N. Arora, Effect of electrode coatings on diffusible hydrogen content, hardness and microstructures of the ferritic heat affected zones in bimetallic welds, Adv. Mater. Res. 383, 4697-4701 (2012).
  • [110] Y. Kim, K. Morita, Relationship between Molten Oxide Structure and Thermal Conductivity in the CaO-SiO2-B2O3 System, ISIJ International 54, 2077-2083 (2014).
  • [111] C. Kenneth, K.C. Mills, Structure and Properties of Slags Used in the Continuous Casting of Steel: Part 1: Conventional Mould Powders, ISIJ ISIJ International 56, 1-13 (2016).
  • [112] P.J. Bray, R.V. Mulkern, E.J. Holupka, Fundametals of Mettalurgy, J. Non-Cryst. Solids 75, 37-44 (1992).
  • [113] J. Zhongtang, T. Yongxing, J. Non-Cryst. Solids 146, 57-62 (1992).
  • [114] Y. Waseda, J.M. Toguri, The structure and properties of oxide melts, publ. World Scientific, Singapore, (1998).
  • [115] S. Sridhar, K.C. Mills, Physicochemical and thermophysical behaviour of silicate slags, Ironmaking and Steelmaking 27, 238-242 (2000).
  • [116] K.C. Mills, Behaviour of Slags, ISIJ Intl. 33, 148-156 (1993).
  • [117] G. Eriksson, A.D. Pelton, Critical evaluation and optimization of thermodynamic properties and phase diagrams of the CaOAl2O3, Al2O3-SiO2 and CaO-SiO2-Al2O3 systems, Met. Mater. Trans. B. 24, 807-816 (1993).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bd7fb4e6-ad87-4569-ad12-8f313dc5ea74
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.