PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Susceptor-Assisted Rapid Microwave Sintering of Al-Kaolin Composite in a Single-Mode Cavity

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present research addresses the low-temperature sintering of 4% kaolin clay reinforced aluminium composite using susceptor-aided microwave sintering at 2.45 GHz frequency. Kaoline clay the naturally available mineral in the north-eastern regions of india. The study aims to convert this kaoline clay into the value added product with enhanced mechanical properties. The Al-x% Kaolin (x = 2, 4, 6, 8, 10) composite was fabricated through the powder metallurgy process by the application of 600 MPa compaction pressure. The composite corresponding to optimum ultimate tensile strength (U.T.S) was subjected to single-mode cavity microwave-assisted sintering by varying the sintering temperatures as 500°C, 550°C and 600°C. The effect of incorporating kaolin clay on the dielectric characteristics of composite powders, as well as the effect of sintering temperature on the microstructural changes and mechanical characteristics of Al-4%Kaolin composites were also examined. Results concluded that the addition of 4 wt% kaolin powder improves the dielectric characteristics of the composite powder. The maximum Hardness. Compression strength and U.T.S of 97 Hv, 202 MPa and 152 MPa respectively achieved for the Al-4% Kaolin composite sintered at 550°C. The higher fracture toughness of 9.56 Ma. m1/2 reveals the ductile fracture for the composite sintered at 550°C.
Twórcy
  • G.M.R Institute of Technology, Rajam, Andhra Pradesh, India
autor
  • Department of Mechanical Engineering, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Chennai, India
  • School of Mechanical Engineering, Sathyabama Institute of Science and Technology (Deemed to Be University), Chennai, Tamil Nadu, 600 119, India
Bibliografia
  • [1] V. Shrivastava, G.K. Gupta, I.B. Singh, Heat treatment effect on the microstructure and corrosion behavior of Al-6061 alloy with influence of α-nanoalumina reinforcement in 3.5% NaCl solution, J. Alloys Compd. 775, 628-638 (2019). DOI: https://doi.org/10.1016/j.jallcom.2018.10.111
  • [2] A. Baradeswaran, A. Elayaperumal, R. Franklin Issac, A statistical analysis of optimization of wear behaviour of Al-Al2O3 composites using taguchi technique, Procedia Eng. 64, 973-982 (2013). DOI: https://doi.org/10.1016/j.proeng.2013.09.174
  • [3] V.S.S. Venkatesh, A.B. Deoghare, Fabrication and mechanical behaviour of Al-kaoline metal matrix composite fabricated through powder metallurgy technique. Mater. Today Proc. 38, 3291-3296 (2020). DOI: https://doi.org/10.1016/j.matpr.2020.10.021
  • [4] K. Ravi Kumar, K. Kiran, V.S. Sreebalaji, Micro structural characteristics and mechanical behaviour of aluminium matrix composites reinforced with titanium carbide, J. Alloys Compd. 723, 795-801 (2017). DOI: https://doi.org/10.1016/j.jallcom.2017.06.309
  • [5] C.S. Kim, K. Cho, M.H. Manjili, M. Nezafati, Mechanical performance of particulate-reinforced Al metal-matrix composites (MMCs) and al metal-matrix nano-composites (MMNCs), J. Mater. Sci. 52, 13319-13349 (2017). DOI: https://doi.org/10.1007/s10853-017-1378-x
  • [6] A. Pakdel, A. Witecka, G. Rydzek, D.N. Awang Shri, A comprehensive microstructural analysis of Al-WC micro- and nano-composites prepared by spark plasma sintering, Mater. Des. 119, 225-234 (2017). DOI: https://doi.org/10.1016/j.matdes.2017.01.064
  • [7] N. Saheb, Spark plasma and microwave sintering of Al6061 and Al2124 alloys, Int. J. Miner. Metall. Mater. 20, 152-159 (2013). DOI: https://doi.org/10.1007/s12613-013-0707-6
  • [8] G. Manohar, K.M. Pandey, S.R. Maity, Effect of sintering mechanisms on mechanical properties of AA7075/B4C composite fabricated by powder metallurgy techniques, Ceram. Int. 47, 15147-15154 (2021). DOI: https://doi.org/10.1016/j.ceramint.2021.02.073
  • [9] K. Ravi Kumar, T. Pridhar, V.S. Sree Balaji, Mechanical properties and characterization of zirconium oxide (ZrO2) and coconut shell ash (CSA) reinforced aluminium (Al 6082) matrix hybrid composite, J. Alloys Compd. 765, 171-179 (2018). DOI: https://doi.org/10.1016/j.jallcom.2018.06.177
  • [10] B.P. Kumar, A.K. Birru, Microstructure and mechanical properties of aluminium metal matrix composites with addition of bamboo leaf ash by stir casting method, Trans. Nonferrous Met. Soc. China. 27, 2555-2572 (2017). DOI: https://doi.org/10.1016/S1003-6326(17)60284-X
  • [11] C. Hima Gireesh, K.G. Durga Prasad, K. Ramji, P.V. Vinay, Mechanical Characterization of Aluminium Metal Matrix Composite Reinforced with Aloe vera powder, Mater. Today Proc. 5, 3289-3297 (2018). DOI: https://doi.org/10.1016/j.matpr.2017.11.571
  • [12] G. Manohar, K.M. Pandey, S.R. Maity, Effect of microwave sintering on the microstructure and mechanical properties of AA7075/B4C/ZrC hybrid nano composite fabricated by powder metallurgy techniques, Ceram. Int. 47, 32610-32618 (2021). DOI: https://doi.org/10.1016/j.ceramint.2021.08.156
  • [13] S. Ozkaya, A. Canakci, Effect of the B4C content and the milling time on the synthesis, consolidation and mechanical properties of AlCuMg-B4C nanocomposites synthesized by mechanical milling, Powder Technol. 297, 8-16 (2016). DOI: https://doi.org/10.1016/j.powtec.2016.04.004
  • [14] V.S.S. Venkatesh, A.B. Deoghare, Effect of Sintering Mechanisms on the Mechanical Behaviour of SiC and Kaoline Reinforced Hybrid Aluminium Metal Matrix Composite Fabricated through Powder Metallurgy Technique, Silicon 14, 5481-5493 (2022). DOI: https://doi.org/10.1007/s12633-021-01333-8
  • [15] P. Ashwath, M. Anthony Xavior, The effect of ball milling & reinforcement percentage on sintered samples of aluminium alloy metal matrix composites, Procedia Eng. 97, 1027-1032 (2014). DOI: https://doi.org/10.1016/j.proeng.2014.12.380
  • [16] J. Croquesel, C.P. Carry, J.M. Chaix, D. Bouvard, S. Saunier, Direct microwave sintering of alumina in a single mode cavity: Magnesium doping effects, J. Eur. Ceram. Soc. 38, 1841-1845 (2018). DOI: https://doi.org/10.1016/j.jeurceramsoc.2017.12.010
  • [17] J. Croquesel, D. Bouvard, J.M. Chaix, C.P. Carry, S. Saunier, Development of an instrumented and automated single mode cavity for ceramic microwave sintering: Application to an alpha pure alumina powder, Mater. Des. 88, 98-105 (2015). DOI: https://doi.org/10.1016/j.matdes.2015.08.122
  • [18] C. Mortalò, R. Rosa, P. Veronesi, S. Fasolin, V. Zin, S.M. Deambrosis, E. Miorin, G. Dimitrakis, M. Fabrizio, C. Leonelli, Microwave assisted sintering of Na-β’’-Al2O3 in single mode cavities: Insights in the use of 2450 mhz frequency and preliminary experiments at 5800 MHz, Ceram. Int. 46, 28767-28777 (2020). DOI: https://doi.org/10.1016/j.ceramint.2020.08.039
  • [19] Ö.S. Canarslan, L. Koroglu, E. Ayas, N.S. Canarslan, A. Kara, P. Veronesi, Susceptor-assisted fast microwave sintering of TiN reinforced SiAlON composites in a single mode cavity, Ceram. Int. 47, 828-835 (2021). DOI: https://doi.org/10.1016/j.ceramint.2020.08.194
  • [20] G. Manohar, K.M. Pandey, S.R. Maity, Effect of Variations in Microwave Processing Temperatures on Microstructural and Mechanical Properties of AA7075/SiC/Graphite Hybrid Composite Fabricated by Powder Metallurgy Techniques, Silicon. 14 (13):1-17 (2022). DOI: https://doi.org/10.1007/s12633-021-01554
  • [21] F. Toptan, A. Kilicarslan, A. Karaaslan, M. Cigdem, I. Kerti, Processing and microstructural characterisation of AA 1070 and AA6063 matrix B4Cp reinforced composites, Mater. Des. 31, S87-S91 (2010). DOI: https://doi.org/10.1016/j.matdes.2009.11.064
  • [22] N.N.A. Mohamed Abdul Ghani, M.A. Saeed, I.H. Hashim, Thermoluminescence (TL) response of silica nanoparticles subjected to 50 Gy gamma irradiation, Malaysian J. Fundam. Appl. Sci. 13, 178-180 (2017). DOI: https://doi.org/10.11113/mjfas.v13n3.593
  • [23] N. Bajpai, A. Tiwari, S.A. Khan, R.S. Kher, N. Bramhe, S.J. Dhoble, Effects of rare earth ions (Tb, Ce, Eu, Dy) on the thermoluminescence characteristics of sol-gel derived and γ-irradiated SiO2 nanoparticles, Luminescence 29, 669-673 (2014). DOI: https://doi.org/10.1002/bio.2604
  • [24] D. Bharali, R. Devi, P. Bharali, R.C. Deka, Synthesis of high surface area mixed metal oxide from the NiMgAl LDH precursor for nitro-aldol condensation reaction, New J. Chem. 39, 172-178 (2015). DOI: https://doi.org/10.1039/c4nj01332h
  • [25] V.S.S. Venkatesh, A.B. Deoghare, Effect of Particulate Type Reinforcements on Mechanical and Tribological Behavior of Aluminium Metal Matrix Composites: A Review, Recent Adv. Mech. Eng., 2021 Springer Singapore, pp. 295-303.
  • [26] S. Phromma, T. Wutikhun, P. Kasamechonchung, T. Eksangsri, C. Sapcharoenkun, Effect of calcination temperature on photo-catalytic activity of synthesized TiO2 nanoparticles via wet ball milling sol-gel method, Appl. Sci. 10 (3), 993 (2020). DOI: https://doi.org/10.3390/app10030993
  • [27] H. Ma, B. Zhao, K. Ding, Y. Zhang, G. Wu, Y. Gao, Influence of dealloying solution on the microstructure of nanoporous copper through chemical dealloying of Al75Cu25ribbons, J. Mater. Res. 35, 2610-2619 (2020). DOI: https://doi.org/10.1557/jmr.2020.69
  • [28] S. Gatea, H. Ou, G. McCartney, Deformation and fracture characteristics of Al6092/SiC/17.5p metal matrix composite sheets due to heat treatments, Mater. Charact. 142, 365-376 (2018). DOI: https://doi.org/10.1016/j.matchar.2018.05.050
  • [29] R. Liu, C. Wu, J. Zhang, G. Luo, Q. Shen, L. Zhang, Microstructure and mechanical behaviors of the ultrafine grained AA7075/B4C composites synthesized via one-step consolidation, J. Alloys Compd. 748, 737-744 (2018). DOI: https://doi.org/10.1016/j.jallcom.2018.03.152
  • [30] N. Kumar Bhoi, H. Singh, S. Pratap, Synthesis and characterization of zinc oxide reinforced aluminum metal matrix composite produced by microwave sintering, J. Compos. Mater. 54, 3625-3636 (2020). DOI: https://doi.org/10.1177/0021998320918646
  • [31] V.S.S. Venkatesh, A.B. Deoghare, Effect of microwave sintering on the mechanical characteristics of Al/kaoline/SiC hybrid composite fabricated through powder metallurgy techniques MAS, Mater. Chem. Phys. 287, 126276 (2022). DOI: https://doi.org/10.1016/j.matchemphys.2022.126276
  • [32] V.S.S. Venkatesh, A.B. Deoghare, Effect of controllable parameters on the tribological behavior of ceramic particulate reinforced aluminium metal matrix composites: A review, J. Phys. Conf. Ser. 1451 (2020). DOI: https://doi.org/10.1088/1742-6596/1451/1/012025
  • [33] A.D. Akinwekomi, Microstructural characterisation and corrosion behaviour of microwave-sintered magnesium alloy AZ61/fly ash microspheres syntactic foams, Heliyon 5, 4, e01531 (2019). DOI: https://doi.org/10.1016/j.heliyon.2019.e01531
  • [34] X. Zhang, Z. Zhang, y. Liu, A. Wang, S. Tian, W. Wang, J. Wang, High-performance B4C-TiB2-SiC composites with tuneable properties fabricated by reactive hot pressing, J. Eur. Ceram. Soc. 39, 2995-3002 (2019). DOI: https://doi.org/10.1016/j.jeurceramsoc.2019.04.001
  • [35] M. Oghbaei, O. Mirzaee, Microwave versus conventional sintering: A review of fundamentals, advantages and applications, J. Alloys Compd. 494, 175-189 (2010). DOI: https://doi.org/10.1016/j.jallcom.2010.01.068
  • [36] V.S.S. Venkatesh, A.B. Deoghare, Modelling and Optimisation of Wear Parameters for Spark Plasma Sintered Al-SiC-Kaoline Hybrid Composite Modelling and Optimisation of Wear Parameters for Spark Plasma Sintered Al-SiC-Kaoline Hybrid Composite, Adv. Mater. Process. Technol. 08, 1286-1304 (2021). DOI: https://doi.org/10.1080/2374068X.2021.1939561
  • [37] A. Bhowmik, D. Dey, A. Biswas, Comparative Study of Microstructure, Physical and Mechanical Characterization of SiC/TiB2 Reinforced Aluminium Matrix Composite, Silicon 13, 2003-2010 (2021). DOI: https://doi.org/10.1007/s12633-020-00591-2
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bd7c3109-b009-4719-900f-d95ceba6e4e0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.