PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Energetic Asymmetry Connected with Energy Flow Changes in Response to Eutrophication : A Study of Multiple Fish Species in Subtropical Shallow Lakes

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Energy flow is a central characteristic in all ecosystems, and it has attracted considerable scientific attention due to its significant effects on the stability of food webs. Lake ecosystems that undergo regime shifts (clear water phase, phytoplankton dominated changed into turbid water, macrophytes dominated or vice versa) are characterized by a series of transformation in trophic structure. Although previous studies have mainly focused on the causes and consequences of regime shifts in shallow lakes, studies about responses of energy flow changes to regime shifts is far from complete. In this paper, we estimated trophic position and benthivory (i.e. degree of benthivory) of seventeen fish species from seven shallow lakes. Our data show that the trophic position and benthivory of fish species in clear water phase are significantly higher than in turbid water. This finding might help spark some ideas for subtropical lake eutrophication treatment.
Rocznik
Strony
305--315
Opis fizyczny
Bibliogr. 34 poz., rys., tab., wykr.
Twórcy
autor
  • Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China
autor
  • Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China
autor
  • Key Laboratory of Poyang Lake Environment and Resource Utilization of Ministry of Education, Nanchang University, China
autor
  • Aquatic Ecology, Department of Biology, Lund University, Lund, SE-223 62 Lund, Sweden
  • Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China
autor
  • Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China
autor
  • Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China
Bibliografia
  • 1. Blindow I., Hargeby A., Meyercordt J., Schubert H. 2006 – Primary production in two shallow lakes with contrasting plant form dominance: A paradox of enrichment? – Limnol. Oceanogr. 51: 2711-2721.
  • 2. Brönmark C., Brodersen J., Chapman B. B., Nicolle A., Nilsson P. A., Skov C., Hans-son L. A. 2010 – Regime shifts in shallow lakes: the importance of seasonal fish migration – Hydrobiologia, 646: 91-100.
  • 3. Canning A. D. and Death R. G. 2017 – Trophic cascade direction and flow determine network flow stability – Ecol. Model. 355: 18-23.
  • 4. Carpenter S. R., Cole J. J., Pace M. L., et al. 2011 – Early warnings of regime shifts: a whole-ecosystem experiment – Science, 332 (6033): 1079-1082.
  • 5. Connell S. D., Ghedini G. 2015 – Resisting regime-shifts: the stabilising effect of compensatory processes – Trends Ecol. Evol. 30: 513-515.
  • 6. Genkai-Kato M. 2007 – Macrophyte refuges, prey behaviour and trophic interactions: consequences for lake water clarity – Ecol. Lett. 10: 105-114.
  • 7. Hempson T. N., Graham N. A., MacNeil M. A., Hoey A. S., Wilson S. K. 2018 – Ecosystem regime shifts disrupt trophic structure – Ecol. Appl. 28: 191-200.
  • 8. Hilt S., Brothers S., Jeppesen E., Veraart A. J., Kosten S. 2017 – Translating regime shifts in shallow lakes into changes in ecosystem functions and services – Bioscience, 67: 928-936.
  • 9. Jeppesen E., Meerhoff M., Holmgren K., et al. 2010 – Impacts of climate warming on lake fish community structure and potential effects on ecosystem function – Hydrobiologia, 646: 73-90.
  • 10. Jeppesen E., Søndergaard M., Meerhoff M., Lauridsen T. L., Jensen J. P. 2007 – Shallow lake restoration by nutrient loading reduction - some recent findings and challenges ahead – Hydrobiologia, 584: 239-252.
  • 11. Kong X., He W., Liu W., Yang B., Xu F., Jørgensen S. E., Mooij W. M. 2016 – Changes in food web structure and ecosystem functioning of a large, shallow Chinese lake during the 1950s, 1980s and 2000s – Ecol. Model. 319: 31-41.
  • 12. Kuiper J. J., Van Altena C., De Ruiter P. C., Van Gerven L. P., Janse J. H., Mooij W. M. 2015 – Food-web stability signals critical transitions in temperate shallow lakes – Nat. Commun. 6: 7727.
  • 13. Landry M. R. and Décima M. R. 2017 – Protistan microzooplankton and the trophic position of tuna: quantifying the trophic link between micro- and mesozooplankton in marine foodwebs – Ices. J. Mar. Sci. 74: 1885-1892.
  • 14. Layman C. A., Quattrochi J. P., Peyer C. M., Allgeier J. E. 2007 – Niche width collapse in a resilient top predator following ecosystem fragmentation – Ecol. Lett. 10: 937-944.
  • 15. Lischke B., Mehner T., Hilt S., Attermeyer K., Brauns M., Brothers S., Gaedke U. 2017 – Benthic carbon is inefficiently transferred in the food webs of two eutrophic shallow lakes – Freshw. Biol. 62: 1693-1706.
  • 16. McCann K., Hastings A., Huxel G. R. 1998 – Weak trophic interactions and the balance of nature – Nature, 395: 794-798.
  • 17. Moss B. 2007 – The art and science of lake restoration. InEutrophication of Shallow Lakes with Special Reference to Lake Taihu, China – Springer, Dordrecht, pp. 15-24.
  • 18. Post D. M. 2002 – Using stable isotopes to estimate trophic position: models, methods, and assumptions – Ecology, 83: 703-718.
  • 19. Post D. M., Conners M. E., Goldberg D. S. 2000 – Prey preference by a top predator and the stability of linked food chains – Ecology, 81: 8-14.
  • 20. Rooney N., McCann K. S. 2012 – Integrating food web diversity, structure and stability – Trends Ecol. Evol. 27: 40-46.
  • 21. Rooney N., McCann K. S, Gellner G., Moore J. C. 2006 – Structural asymmetry and the stability of diverse food webs – Nature, 442: 265-269.
  • 22. Scheffer M., Carpenter S. R. 2003 – Catastrophic regime shifts in ecosystems: linking theory to observation – Trends Ecol. Evol. 18: 648-656.
  • 23. Scheffer M., Hosper S., Meijer M., Moss B., Jeppesen E. 1993 – Alternative equilibria in shallow lakes – Trends Ecol. Evol. 8: 275-279.
  • 24. Turschak B. A., Bunnell D., Czesny S., Höök T. O., Janssen J., Warner D., Bootsma H. A. 2014 – Nearshore energy subsidies support Lake Michigan fishes and invertebrates following major changes in food web structure – Ecology, 95: 1243-1252.
  • 25. Ullah H., Nagelkerken I., Goldenberg S. U., Fordham D. A. 2018 – Climate change could drive marine food web collapse through altered trophic flows and cyanobacterial proliferation – PloS Biol. 16: e2003446.
  • 26. Vadeboncoeur Y., Jeppesen E., Vander Zanden M. J., Schierup H. H., Christoffersen K., Lodge D. M. 2003 – From Greenland to green lakes: cultural eutrophication and the loss of benthic pathways in lakes – Limnol. Oceanogr. 48: 1408-1418.
  • 27. Vander Zanden M. J., Cabana G., Rasmussen J. B. 1997 – Comparing trophic position of freshwater fish calculated using stable nitrogen isotope ratios (δ15N) and literature dietary data – Can. J. Fish. Aquat. Sci. 54: 1142-1158.
  • 28. Vander Zanden M. J., Chandra S., Park S. K., Vadeboncoeur Y., Goldman C. R. 2006 – Efficiencies of benthic and pelagic trophic pathways in a subalpine lake – Can. J. Fish. Aquat. Sci. 63: 2608-2620.
  • 29. Xu J., Wen Z., Gong Z., Zhang M., Xie P., Hans-son L. A. 2012 – Seasonal trophic niche shift and cascading effect of a generalist predator fish – PloS ONE, 7 (12): e49691.
  • 30. Xu J., Wen Z., Ke Z., et al. 2014 – Contrasting energy pathways at the community level as a consequence of regime shifts – Oecologia, 175: 231-241.
  • 31. Xu J., Xie P. 2004 – Studies on the food web structure of Lake Donghu using stable carbon and nitrogen isotope ratios – J. Freshw. Ecol. 19: 645-650.
  • 32. Xu J., Zhang H., Cai Y., García Molinos J., Zhang M. 2016 – Optimal response to habitat linkage of local fish diversity and mean trophic level – Limnol. Oceanogr. 61: 1438-1448.
  • 33. Xu J., Zhang M., Xie P. 2007 – Trophic relationship between the parasitic isopod Ichthyoxenus japonensis and the fish Carassius auratus auratus as revealed by stable isotopes – J. Freshw. Ecol. 22: 333-338.
  • 34. Zhang H., Wu G., Zhang P., Xu J. 2013 – Trophic fingerprint of fish communities in subtropical floodplain lakes – Ecol Freshw. Fish, 22: 246-256.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bd7899bb-7454-4614-9038-65c92140d97f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.