Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Kinetic models can be used to characterize the flotation process. In this paper, three primary parameters, namely, distribution of flotation rate constant f(K), order of flotation process n and ultimate recovery R∞ are presented to perform analysis of flotation kinetics. The flotation rate constant f(K) is a function of both the size and hydrophobicity of particles. Though the more commonly used distributions are Delta function as well as Rectangular, Kelsall and Gamma models, there is no agreement in the literature as to which distribution function better characterize the floatability distribution. The first-order models can be used to describe most mineral flotation processes, while there is also evidence that the non-integral-order equation is capable of representing the kinetic characteristics of the batch flotation process. The order is lower than 1 in the initial moments of the flotation process. The solution of ultimate recovery calculated by the least squares method is greater than 100% (R∞ >100%). An empirical model was proposed to avoid the improper phenomenon in the solution of ultimate recovery, which can improve the availability and validity of kinetic models. Finally, more attention should be paid to the overfitting resulting from the increase in the number of parameters in the statistical analysis of kinetic models.
Rocznik
Tom
Strony
342--365
Opis fizyczny
Bibliogr. 105 poz., rys., tab.
Twórcy
autor
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, PR China
- Department of Chemical Engineering, University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia
autor
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, PR China
autor
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, PR China
autor
- Department of Chemical Engineering, University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia
autor
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, PR China
Bibliografia
- AGAR G.E., CHIA J., REQUIS-C L., 1998. Flotation rate measurements to optimize an operating circuit. Miner. Eng. 11 (4), 347-360.
- AHMED M.M., 1995. Kinetics of Maghara coal flotation. Unpublished MSc Thesis, Assiut University, pp. 3–33.
- AHMED M.M., 2004. Discrimination of different models in the flotation of Maghara coal. Miner. Process. Extra. Metall. (Trans. Inst. Min. Metall. C) 113(2), C103-C110.
- ALBIJANIC B., SUBASINGHE N., PARK C.H., 2015. Flotation kinetic models for fixed and variable pulp chemical conditions. Miner. Eng. 78, 66-68.
- ALLAN G.C., WOODCOCK J. T., 2001. A review of the flotation of native gold and electrum. Miner. Eng. 14 (9), 931-962.
- APLING A.C., ERSAYIN S., 1986. Reproducibility of semi-batch flotation testwork with the leeds open-top cell and of derived kinetic-parameters. Miner. Process. Extra. Metall. (Trans. Inst. Min. Metall. C) 95, C83-C88.
- ARBITER N., 1951. Flotation rates and flotation efficiency. Trans. AIME. Sept., 791-796.
- ARBITER N., HARRIS C.C., 1962. Flotation Kinetics, in: Fuerstenau D.W. (Ed.), Froth Flotation 50th Anniversary Volume. AIME, New York, pp. 215-246.
- BAKALARZ A., DRZYMALA J., 2013. Interrelation of the Fuerstenau upgrading curve parameters with kinetics of separation. Physicochem. Probl. Miner. Process. 49(1), 443−451.
- BAYAT O., UCURUM M., POOLE C., 2004. Effects of size distribution on flotation kinetics of Turkish sphalerite. Miner. Process. Extra. Metall. (Trans. Inst. Min. Metall. C) 113 (1), C53-C59.
- BELOGLAZOV K.F., 1939. The kinetics of the flotation process. Tsvetn. Metall. 9, 70-76.
- BLOOM F., HEINDEL T.J., 1997. Mathematical modelling of the flotation deinking process. Math. Comput. Model. 25 (5), 13-58.
- BOGDANOV O.S., KIZEVALTER B.V, YA KHAYMAN V., 1954. Non-ferros. Metals. 4, 1.
- BROZEK M., MLYNARCZYKOWSKA A., 2007. Analysis of kinetics models of batch flotation. Physicochem. Probl. Miner. Process. 41, 51-65.
- BU X., XIE G., CHEN Y., NI C., 2016. The order of kinetic models in coal fines flotation. Int. J. Coal Prep. Util. DOI: 10.1080/19392699.2016.1140150.
- BULATOVIC S.M., 2007. Handbook of flotation reagents: chemistry, theory and practice: Volume 1: flotation of sulfide ores. Elsevier, Amsterdam, pp. 119.
- CASALI A., GONZALEZ G., AGUSTO H., VALLEBUONA G., 2002. Dynamic simulator of a rougher flotation circuit for a copper sulphide ore. Miner. Eng. 15 (4), 253-262.
- CHANDER S., POLAT M., 1994. In quest of a more realistic flotation kinetics model, in: Proceedings of the IV Meeting on the Southern Hemisphere on Mineral Technology and III Latin American Congress on Froth Flotation, Castro, S., Alvares, J. (Eds.), Chile, pp. 481-500.
- CHEN Z.M., MULAR L., 1982. A study of flotation kinetics - A Kinetic model for contimuous flotation. You-Se-Jin-Shu, Trans.Miner. Process. 3, 38-43.
- CHEN Z.M., WU D.C., 1978. A study of flotation kinetics (1). You-Se-Jin-Shu, Trans.Miner. Process. 10, 28-33.
- CILEK E.C., 2004. Estimation of flotation kinetic parameters by considering interactions of the operating variables. Miner. Eng. 17 (1), 81-85.
- COETZER G., DU PREEZ H.S., BREDENHANN R., 2003. Influence of water resources and metal ions on galena flotation of Rosh Pinah ore. J. S. Afr. Inst. Min. Metall. 103 (3), 193-207.
- CUTTRISS R.H., 1977. The Flotation Properties of Some Western Australian Nickel Sulphides and Associated Minerals. University of Melbourne.
- DANOUCARAS A.N., VIANNA S.M., NGUYEN A.V., 2013. A modeling approach using back-calculated induction times to predict recoveries in flotation. Int. J. Miner. Process. 124, 102-108.
- DIAO J., FUERSTENAU D.W., HANSON J.S., 1992. Kinetics of coal flotation, in: SME-AIME Annual Meeting, Phoenix, AZ, vol. 92.
- DING H., 1991. Study of flotation kinetic models of graphite in Jianxi, Jiangxi province. Util. Miner. Resources 1991 (2), 43-47.
- DOWLING E.C., KLIMPEL R.R., APLAN F.F., 1985. Model discrimination in the flotation of a porphyry copper ore. Miner. Metall. Process. 2, 87-101.
- EK C., 1992. Flotation kinetics, in: Mavros, P., Matis, K.A. (Eds.), Innovations in Flotation Technology. Springer, Netherlands, pp. 183-210).
- FUERSTENAU D.W., WILLIAMS M.C., NARAYANAN K.S., DIAO J.L., URBINA R.H., 1988. Assessing the wettability and degree of oxidation of coal by film flotation. Energ. Fuel. 2 (3), 237-241.
- GULSOY O.Y., ERSAYIN S., 1996. A new approach to kinetic characterization of semi batch flotation tests, In: Proceedings of the 6th International Mineral Processing Symposium, Kusadasi, Turkey, pp. 24-26.
- GULSOY O.Y., ERSAYIN S., 1998. Improving the reproducibility of semi-batch flotation tests. Miner. Process. Extra. Metall. (Trans. Inst. Min. Metall. C) 107, C81-C86.
- GHARAI M., VENUGOPAL R., 2016. Modeling of Flotation Process—An Overview of Different Approaches. Miner. Process. Extra. Metall. Review 37(2), 120-133.
- HARRIS C.C., CHAKRAVARTI A., 1970. Semi-batch froth flotation kinetics: species distribution analysis. Trans. AIME 247, 162-172.
- HARRIS C.C., CUADROS-PAZ A., 1978. Species interaction in flotation: a laboratory-scale semi-batch study. Int. J. Miner. Process. 5 (3), 267-283.
- HARRIS C.C., KHANDRIKA S.M, 1985. Breakage and attrition in laboratory flotation machines. Powder Tech. 45 (1), 95-97.
- HARRIS C.C., RIMMER H.W., 1966. Study of a two-phase model of the flotation process. Miner. Process. Extra. Metall. (Trans. Inst. Min. Metall. C) 75, C153-C162.
- HERBST J.A., HARRIS M., 2007. Modeling and simulation of industrial flotation processes, in: Fuerstenau M.C., Jameson R.H., (Ed.), Froth Flotation: A century of innovation. SME, Littleton, Colorado, pp. 757-777.
- HERNAINZ F., CALERO M., 1996. Flotation rate of celestite and calcite. Chem. Eng. Sci. 51 (1), 119-125.
- HERNAINZ F., CALERO M., 2001. Froth flotation: kinetic models based on chemical analogy. Chem. Eng. Process. 40 (3), 269-275.
- HERNAINZ F., CALERO M., 2001. Froth flotation:kinetic models based on chaemical analogy. Chem. Eng. Process. 40, 269-275.
- HORST W.R., MORRIS T.M., 1956. Can flotation rates be improved?. Engng. Min. J. 157 (10), 81-83.
- HUBER-PANU I., ENE-DANALACHE E., COJOCARIU D.G., 1976. Mathematical models of batch and continuous flotation, in: Fuerstenau M.C. (Ed.), Flotation, A.M. Gaudin Memorial Volume, vol. 2, AIME, New York, pp. 675-724.
- IMAIZUMI T., INOUE T., 1963. Kinetic considerations of froth flotation, in: Proceedings of the 6th International Mineral Processing Congress, Cannes, pp. 581-593
- JAMESON G.J., NAM S., YOUNG M.M., 1977. Physical factors affecting recovery rates in flotation. Miner. Sci. Eng. 9 (3), 103-118.
- JARNESON G.J., NARN S., MOO YOUNG M., 1977. Physical factors affecting recovery rates in flotation. Miner. Sci. Eng. 9, 103-108.
- JOVANOVIC I., MILJANOVIC I., 2015. Modelling of Flotation Processes by Classical Mathematical Methods – a Review. Arch Min Sci 60 (4), 905-919.
- JOWETT A., 1974. Resolution of flotation recovery curves by a difference plot method. Trans. Am. Soc. Min. Metall. Eng. 85, C263-C266.
- KELSALL D.F., 1961. Application of probability assessment of flotation systems. Bull. Inst. Min. Metall. 70, 191-204.
- KELSALL D.F., STEWART P.S.B., 1971. A critical review of applications of models of grinding and flotation, in: Proceedings of the Symposium on Automatic Control Systems in Mineral Processing Plant, Brisbane, Australia, pp. 213-232.
- KING R.P., 1976. The use of simulation in the design and modification of flotation plants, in: Fuerstenau M.C. (Ed.), Flotation: A.M. Gaudin Memorial Vol. 2, AIME, New York, 937-961.
- KLASSEN V.L., MOCROUSOV V .A., 1963. An introduction to the theory of flotation. Butterworths, London.
- KLIMPEL R.R., 1980. Selection of chemical reagents for flotation, in: Mullar, A.I., Bhappu, R.B. (Ed.), Mineral processing plant design, 2nd edn. AIME, New York, pp. 907-934.
- LANGMUIR I., 1918. The adsorption of gases on plane surfaces of glass, mica and platinum. J .Am. Chem. Soc. 40 (9), 1361-1403.
- LAWRENCE S., GILES C.L., TSOI A.C., 1997. Lessons in neural network training: Overfitting may be harder than expected, in: Proceedings of the Fourteenth National Conference on Artificial Intelligence, AAAI-97, AAAI Press, Menlo Park, California, pp. 540–545.
- LI Y., ZHAO W., GUI X., ZHANG X., 2013. Flotation kinetics and separation selectivity of coal size fractions. Physicochem. Probl. Miner. Process. 49 (2), 387-395.
- LOVEDAY B. K., 1966. Analysis of froth flotation kinetics. Trans. IMM 75, C219-C225.
- LUO C., HE Y., BU X., WANG S., 2015. An improved classic flotation kinetic model of narrow size slime. J. China Univ. Min. Tech. 44(3):477-482
- LYNCH A.J., JOHNSON N.W., MANLAPIG E.V., THORNE C.G., 1981. Mathematical models of flotation, in: Fuerstenau D.W. (Ed.), Mineral and coal flotation circuits: their simulation and control. Elsevier, Amsterdam, 3, pp. 57-96.
- MATIS K.A., ZOUBOULIS A.I., 1995. An Overview of the Process, in: Matis K.A. (Ed.), Flotation Science and Engineering. Marcel Dekker Inc., New York, pp. 1-44.
- MAZUMDAR M., 1994. Statistical discrimination of flotation models based on batch flotation data. Int. J. Miner. Process. 42 (1), 53-73.
- MEHROTRA S.P., PADMANABHAN N.P.H., 1990. Analysis of flotation kinetics of Malanjkhand copper ore, India, in terms of distributed flotation-rate constant. Miner. Process. Extra. Metall. (Trans. Inst. Min. Metall. C) 99, C32-C42.
- MEYER W.C., KLIMPEL R.R., 1982. Rate Limitations in Froth Flotation. Trans. Sot. Min. Eng. AIME 274, 1852.
- MIKA T., FUERSTENAU D., 1968. A microscopic model of the flotation process. In Proceedings of the VIII International Mineral processing Congress, Leningrad, vol. II, pp. 246-269.
- MORRIS T.M., 1952. Measurement and evaluation of the rate of flotation as a function of particle size. Mining Eng. 4 (8), 794-798.
- NASSIF N., ERHEL J., PHILIPPE B., 2015. Orthogonal factorizations and linear least squares problems, in: Introduction to computational linear algebra. CRC Press, New York, pp. 79-104.
- NATRAJAN R., NIRDOSH I., 2006. A comparative study of kinetics of flotation of a copper-nickel ore by N-hydrocinnamoyl-N-phenylhydroxylamine (HCNPHA) vis-a-vis potassium amyl xanthate (PAX), in: Proceedings of the International Seminar on Mineral Processing Technology, Chennai, India, pp. 236-242.
- NGUYEN A., SCHULZE H.J., 2004. Colloidal science of flotation. Marcel Dekker Inc., New York.
- NI C., XIE G., JIN M., PENG Y., XIA W., 2016. The difference in flotation kinetics of various size fractions of bituminous coal between rougher and cleaner flotation processes. Powder Tech. 292, 210-216.
- NI C., XIE, G., JIN, M., PENG, Y., XIA, W., 2016. The difference in flotation kinetics of various size fractions of bituminous coal between rougher and cleaner flotation processes. Powder Tech. 292, 210-216.
- NIEMI A.J., YLINEN R., HYOTYNIEMI H., 1997. On characterization of pulp and froth in cells of flotation plant. Int. J. Miner. Process. 51 (1), 51-65.
- OPROIU G., LACATUSU I., STOICA L., 2009. Examination of Kinetic Flotation Process for Two Experimental Cu (II) and Ni (II)–α-benzoinoxime Systems, Based on Kinetic Literature Models. Chemistry Magazine (Revista de Chimie), 60 (6), 641-645.
- POLAT M., CHANDER S., 2000. First-order flotation kinetics models and methods for estimation of the true distribution of flotation rate constants. Int. J. Miner. Process. 58 (1), 145-166.
- RADOEV B.P., ALEXANDROVA L.B., TCHALJOVSKA S.D., 1990. On the kinetics of froth flotation. Int. J. Miner. Process. 28 (1), 127-138.
- RALSTON J., 1992. The influence of particle size and contact angle in flotation, In: Laskowski J.S., Ralston J. (Eds.), Colloid Chemistry in Minerals Processing. Elsevier, Amsterdam, pp. 203-223.
- SALEH A.M., 2010. A study on the performance of second order models and two phase models in iron ore flotation. Physicochem. Probl. Miner. Process. 44, 215-230.
- SBARBARO D., MALDONADO C., CIPRIANO A., 2008. A two level hierarchical control structure for optimizing a rougher flotation circuit, in: Proceedings of the 17th IFAC International Symposium in Automation in Mining, Mineral and Metal Processing, Seoul, Korea, pp. 1018-1022.
- SCHUHMANN Jr. R., 1942. Flotation Kinetics I: Methods for steady-state study of flotation problems. J. Phys. Chem. 46 (8), 891-902.
- SCHULZE H.J., 1977. New theoretical and experimental investigations on stability of bubble particle aggregates in flotation: a theory on the upper particle size of floatability. Int. J. Miner. Process. 4, 241-259.
- SCHULZE H.J., 1992. Interface actions in mineral processes. Aufber. Technik 33, 434-443.
- SOKOLOVIĆ J.M., STANOJLOVIĆ R.D., MARKOVIĆ Z.S., 2012. The effects of pretreatment on the flotation kinetics of waste coal. Int. J. Coal Prep. Util. 32 (3), 130-142.
- SOMASUNDARAN P., LIN I.J., 1973. Method for evaluating flotation kinetic parameters. Trans. AIME 254, 181-184.
- SOSA-BLANCO C., HODOUIN D., BAZIN C., LARA-VALENZUELA C., SALAZAR J., 1999. Integrated simulation of grinding and flotation application to a lead-silver ore. Miner. Eng. 12 (8), 949-967.
- SRIPRIYA R., RAO P.V.T., CHOUDHURY R.B., 2003. Optimization of operating variables of fine coal flotation using a combination of modified flotation parameters and statistical techniques. Int. J. Miner. Process. 68, 109-127.
- SRIPRIYA R.P.V.T., RAO P.V.T., CHOUDHURY B.R., 2003. Optimisation of operating variables of fine coal flotation using a combination of modified flotation parameters and statistical techniques. Int. J. Miner. Process. 68 (1), 109-127.
- STACHURSKI J., 1970. The Mathematical Model for the Ion – Extraction Flotation Process. Archiwum Górnictwa 15, 219-229.
- STANOJLOVIC R.D., SOKOLOVIC J.M., 2014. A study of the optimal model of the flotation kinetics of copper slag from copper mine Bor. Arch. of Min. Sci. 59 (3), 821-834.
- SUTHERLAND K.L., 1948. Physical chemistry of flotation. XI. Kinetics of the flotation process. J. Phys. Chem. 52 (2), 394-425.
- TARJAN G., 1986. Mineral Processing: Concentration, flotation, separation, backup processes Vol 2. Akademai Kiado, Budapest, pp. 113–336.
- TOMLINSON H.S., FLEMING M.G., 1965. Flotation rate studies, in: Roberts A. (Ed.), Proceeding VI International Mineral Processing Congress, Pergamon, pp. 563-579.
- UCURUM M., 2009. Influences of Jameson flotation operation variables on the kinetics and recovery of unburned carbon. Powder Tech. 191 (3), 240-246.
- UCURUM M., BAYAT O., 2007. Effects of operating variables on modified flotation parameters in the mineral separation. Separ. Purif. Tech. 55 (2), 173-181.
- VANANGAMUDI M., KUMAR S.S., RAO T.C., 1989. Effect of fines content on the froth flotation of coal. Powder Tech. 58 (2), 99-105.
- VANANGAMUDI M., RAO T.C., 1986. Modelling of batch coal flotation operation. Int. J. Miner. Process. 16 (3), 231-243.
- VAPUR H., BAYAT O., UÇURUM M., 2010. Coal flotation optimization using modified flotation parameters and combustible recovery in a Jameson cell. Energ. Convers. Manag. 51 (10), 1891-1897.
- VINNETT L., ALVAREZ-SILVA M., JAQUES A., HINOJOSA F., YIANATOS J., 2015. Batch flotation kinetics: Fractional calculus approach. Miner. Eng. 77, 167-171.
- VOLKOYA Z.V., 1946. On the law governing process of separation of solids of different floatabilities. Acta Physicochimica USSR 21, 1105-1113.
- WILLS B.A., 1988. Froth flotation, in: Hopkins D.W. (Ed.), Mineral Processing Technology. Oxford, Pergamon, pp.457-595.
- WOODBURN, E.T., KING, R.P., COLBORN, R.P., 1971. The effect of particle size distribution on the performance of a phosphate flotation process. Metall. Mater. Trans. B 2(11), 3163-3174.
- XU C.L., 1984. Kinetic model for continuous flotation in acolumn. You-Se-Jin-Shu, Trans.Miner. Process. 3 (36), 35-42.
- XU M., 1998. Modified flotation rate constant and selectivity index. Miner. Eng. 11 (3), 271-278.
- YIANATOS J., BERGH L., VINNETT L., CONTRERAS F., DÍAZ F., 2010. Flotation rate distribution in the collection zone of industrial cells. Miner. Eng. 23 (11), 1030-1035.
- YIN D., 1986. Flotation model with a distribution of coefficient – the change of mean rate coefficient with time. You-Se-Jin-Shu, Trans.Miner. Process. 1, 49-56.
- YUAN X.M., PALSSON B.I., FORSSBERG K.S.E., 1996. Statistical interpretation of flotation kinetics for a complex sulphide ore. Miner. Eng. 9 (4), 429-442.
- ZHANG H., LIU J., CAO Y., WANG Y., 2013. Effects of particle size on lignite reverse flotation kinetics in the presence of sodium chloride. Powder tech. 246, 658-663.
- ZUNIGA H.G., 1935. Flotation recovery is an exponential function of its rate. Boln. Soc. Nac. Min., Santiago, Chile, 47, 83-86.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bd7253c1-dd9a-4e76-9a6f-b161d15c983f