Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this article, we exploit the relations of total belong and total non-belong to introduce new soft separation axioms with respect to ordinary points, namely tt-soft pre Ti (i = 0, 1, 2, 3, 4) and tt-soft pre-regular spaces. The motivations to use these relations are, first, cancel the constant shape of soft pre-open and pre-closed subsets of soft pre-regular spaces, and second, generalization of existing comparable properties on classical topology. With the help of examples, we show the relationships between them as well as with soft pre Ti (i = 0, 1, 2, 3, 4) and soft pre-regular spaces. Also, we explain the role of soft hyperconnected and extended soft topological spaces in obtaining some interesting results. We characterize a tt-soft pre-regular space and demonstrate that it guarantees the equivalence of tt-soft pre Ti (i = 0, 1, 2). Furthermore, we investigate the behaviors of these soft separation axioms with the concepts of productand sum of soft spaces. Finally, we introduce a concept of pre-fixed soft point and study its main properties.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
196--211
Opis fizyczny
Bibliogr. 33 poz.
Twórcy
autor
- Department of Mathematics, Sana’a University, Sana’a, Yemen
autor
- Department of Mathematics, Hacettepe University, Ankara, Turkey
autor
- Department of Mathematics, College of Sciences and Humanities in Aflaj, Prince Sattam bin Abdulaziz University, Riyadh, Saudi Arabia
Bibliografia
- [1] D. Molodtsov, Soft set theory-first results, Comput. Math. Appl. 37(1999), 19-31.
- [2] P. K. Maji, R. Biswas, and R. Roy, An application of soft sets in a decision making problem, Comput. Math. Appl. 44(2002), 1077-1083.
- [3] F. Karaaslan, Soft classes and soft rough classes with applications in decision making, Math. Probl. Eng. 2016(2016), 1584528.
- [4] A. Kharal and B. Ahmad, Mappings on soft classes, New Math. Nat. Comput. 7(2011), no. 3, 471-481.
- [5] M. Shabir and M. Naz, On soft topological spaces, Comput. Math. Appl. 61(2011), 1786-1799.
- [6] N. Çağman, S. Karataş, and S. Enginoglu, Soft topology, Comput. Math. Appl. 62(2011), 351-358.
- [7] A. Aygünoğlu and H. Aygün, Some notes on soft topological spaces, Neural Comput. & Appl. 21(2012), 113-119.
- [8] T. Hida, A comparison of two formulations of soft compactness, Ann. Fuzzy Math. Inform. 8(2014), no. 4, 511-524.
- [9] T. M. Al-shami, M. E. El-Shafei, and M. Abo-Elhamayel, Almost soft compact and approximately soft Lindelöf spaces, J. Taibah Univ. Sci. 12(2018), no. 5, 620-630.
- [10] T. M. Al-shami and M. E. El-Shafei, On soft compact and soft Lindelöf spaces via soft pre-open sets, Ann. Fuzzy Math. Inform. 17(2019), no. 1, 79-100.
- [11] T. M. Al-shami, Comments on “Soft mappings spaces”, Sci. World J. 2019(2019), 6903809.
- [12] T. M. Al-shami, Comments on some results related to soft separation axioms, Afr. Mat. 31(2020), no. 7, 1105-1119.
- [13] K. V. Babitha and S. J. John, Studies on soft topological spaces, J. Intell. Fuzzy Syst. 28(2015), 1713-1722.
- [14] K. V. Babitha and S. J. John, Soft topologies generated by soft set relations, in: S. J. John (ed.), Handbook of Research on Generalized and Hybrid Set Structures and Applications for Soft Computing, IGI Global Pub, Springer International Publishing; 2016, pp. 118-126.
- [15] T. M. Al-shami, Soft somewhere dense sets on soft topological spaces, Commun. Korean Math. Soc. 33(2018), no. 4, 1341-1356.
- [16] T. M. Al-shami, I. Alshammari, and B. A. Asaad, Soft maps via soft somewhere dense sets, Filomat 34(2020), no. 10, 3429-3440.
- [17] M. E. El-Shafei, M. Abo-Elhamayel, and T. M. Al-shami, Partial soft separation axioms and soft compact spaces, Filomat 32(2018), no. 13, 4755-4771.
- [18] T. M. Al-shami and M. E. El-Shafei, Partial belong relation on soft separation axioms and decision making problem: two birds with one stone, Soft Comput. 24(2020), 5377-5387.
- [19] M. E. El-Shafei and T. M. Al-shami, Applications of partial belong and total non-belong relations on soft separation axiomsand decision-making problem, Comput. Appl. Math. 39(2020), no. 3, 138, DOI: https://doi.org/10.1007/s40314-020-01161-3.
- [20] D. Wardowski, On a soft mapping and its fixed points, Fixed Point Theory Appl. 2013(2013), 182, DOI: https://doi.org/10.1186/1687-1812-2013-182.
- [21] T. M. Al-shami and E. A. Abo-Tabl, Soft α-separation axioms and α-fixed soft points, AIMS Mathematics 6(2021), no. 6, 5675-5694.
- [22] I. Zorlutuna and H. Çakir, On continuity of soft mappings, Appl. Math. Inf. Sci. 9(2015), no. 1, 403-409.
- [23] S. Das and S. K. Samanta, Soft metric, Ann. Fuzzy Math. Inform. 6(2013), no. 1, 77-94.
- [24] S. Nazmul and S. K. Samanta, Neighbourhood properties of soft topological spaces, Ann. Fuzzy Math. Inform. 6(2013), no. 1, 1-15.
- [25] T. M. Al-shami and L. D. R. Kočinac, The equivalence between the enriched and extended soft topologies, Appl. Comput. Math. 18(2019), no. 2, 149-162.
- [26] F. Feng, Y. M. Li, B. Davvaz, and M. I. Ali, Soft sets combined with fuzzy sets and rough sets: a tentative approach, Soft Comput. 14(2010), 899-911.
- [27] M. I. Ali, F. Feng, X. Liu, W. K. Min, and M. Shabir, On some new operations in soft set theory, Comput. Math. Appl. 57(2009), 1547-1553.
- [28] P. K. Maji, R. Biswas, and R. Roy, Soft set theory, Comput. Math. Appl. 45(2003), 555-562.
- [29] K. V. Babitha and S. J. John, Soft set relations and functions, Comput. Math. Appl. 60(2010), 1840-1849.
- [30] I. Arockiarani and A. A. Lancy, Generalized soft gβ-closed sets and soft gsβ-closed sets in soft topological spaces, Int. J. Math. Arch. 4(2013), no. 2, 1-7.
- [31] A. Kandil, O. A. E. Tantawy, S. A. El-Sheikh, and A. M. Abd El-latif, Soft connectedness via soft ideals, J. New Results Sci. 4(2014), 90-108.
- [32] M. Akdag and A. Ozkan, On Soft pre-open sets and soft pre separation axioms, Gazi Univ. J. Sci. 27(2014), no. 4,1077-1083.
- [33] T. M. Al-shami, L. D. R. Kočinac, and B. A. Asaad, Sum of soft topological spaces, Mathematics 8(2020), no. 6, 990, DOI: https://doi.org/10.3390/math8060990.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bd7224c1-be53-483c-ada4-b9f48a6f09d8