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Abstract
We introduce a uniform non-monotonic framework for knowledge representation
based on epistemic logic which is sufficiently general to encompass several non-
monotonic formalisms, including circumscription, autoepistemic logic, various
semantics proposed for logic programs and deductive databases (stable semantics,
well-founded semantics and stationary semantics) as well as Gelfond’s epistemic
specifications. The existence of such a uniform framework allows us not only to
provide simpler and perhaps more natural definitions of various formalisms but it
also enables us to better understand mutual relationships existing between them.

Keywords – non-monotonic reasoning, semantics of logic programs, disjunctive logic pro-
grams, deductive databases

1 Introduction

In recent years, various approaches to non-monotonic reasoning and different semantics for
normal and disjunctive logic programs have been proposed, including:

• Autoepistemic Logic [1];
• Circumscription, CWA, GCWA, ECWA, etc. [2, 3, 4, 5].
• Circumscriptive Epistemic Logic [6];
• Epistemic Specifications [7];
• Stable Semantics (with “classical” negation) [8, 9];
• Well-Founded and Stationary Semantics [10, 11];
• Disjunctive Stable Semantics [12];
• Disjunctive Stationary Semantics [13].
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In this paper we introduce a uniform non-monotonic knowledge representation framework
which incorporates the following features:

• It includes all of the non-monotonic formalisms mentioned above as special cases. More
precisely, each one of these formalisms can be properly embedded into the new frame-
work1.

• It is more expressive than each one of these formalisms considered individually.

• It is defined in the language of propositional logic by means of a simple epistemic-style
fixed-point equation.

Remark 1.1. The proposed framework does not include Reiter’s default logic [14] as a special
case. It is however closely related to the formalism of stationary default logic proposed earlier
in [15] which includes Reiter’s default logic as a special case. It should be possible to combine
both formalisms into one thus obtaining a yet more general framework. �

2 Propositional Language

Before introducing the formalism we need to define the propositional language K in which our
formalism is defined. The language K includes three types of propositional constants corre-
sponding to three types of reasoning: objective reasoning, positive introspection and default
introspection:

Objective Reasoning: Objective propositional symbols “A” ;

Positive Introspection: Propositional symbols “LF ”, where F is any propositional formula
expressible in the language K, with the intended meaning that the formula F is true in a
given theory T , or, more precisely, that F is logically implied by T , i.e., T |= F ;

Default Introspection: Propositional symbols “DF ”, where F is any propositional formula
expressible in the language K, with the intended meaning that the formula F is true by
default in a given theory T , or, more precisely, that it is implied by circumscription of T ,
i.e., T |=circ F.

In general, the choice of the default formalism used is application dependent. In this paper
we use circumscription T |=circ F which minimizes objective propositional symbols2 and fixes
all the remaining (introspective) ones, i.e.:

T |=circ F ≡ CIRC(T ;Obj) |= F.

The above definition states that the propositional language K has the property (see also
[17]) that for any formula F in K its alphabet also contains the corresponding propositional

1Only propositional circumscription is considered here.
2The author is indebted to L. Yuan for pointing out the need to use prioritized circumscription in the

definition of circumscriptive epistemic logic [16]
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constants LF and DF , i.e., propositional symbols whose names consist of a string beginning
with the symbol L or D followed by the formula F . It is important to realize that from a
formal standpoint these new propositional constants LF andDF are no different than any other
propositional symbols. They have, however, a special intended meaning, namely, intuitively
LF is supposed to mean “F is true” while DF means “F is true by default”.

Remark 2.1. The introduction of introspective propositions LF and DF is just a technical
device, whose purpose is to avoid defining these symbols as new unary connectives (like, e.g.,
negation ¬), which would then force us to provide them with suitable truth valuations, and, to
avoid defining them as modal operators, which would then take us out of the realm of propo-
sitional calculus. By using these propositions we remain firmly within classical propositional
calculus. At the same time, the above definition allows arbitrarily deep nesting of positive and
default introspection, e.g., it allows formulae of the form L(¬DA ∨ LA).

It is easy to see that any propositional language K∗ can be expanded to the language K
satisfying these conditions. Namely, it suffices to define K0 = K∗,

Kn+1 = Kn ∪ {LF : F ∈ Kn} ∪ {DF : F ∈ Kn}

and K =
⋃

n<ω Kn. In order to preserve the countability of the language, it is tacitly as-
sumed here that unique propositions LF and DF correspond to the whole equivalence class of
formulae tautologically equivalent to F . �

3 Static Expansions and Static Epistemic Logic

In this section we introduce static expansions E of a propositional theory T in the language
K. They will combine stable autoepistemic expansions of Moore [1] and stable circumscrip-
tive expansions of Przymusinski [6]. For simplicity, any propositional theory T expressed in
the language K will be called an epistemic theory. We will also assume that all theories are
implicitly closed under logical consequence.

Definition 3.1. A theory E is called a static expansion of an epistemic theory T if it satisfies the
following fixed-point equation:

E = T ∪ {LF : E |= F} ∪ {¬LF : E 6|= F} ∪

∪ {DF : E |=circ F} ∪ {¬DF : E |=circ ¬F}.�

We will call the epistemic logic based on static expansions static epistemic logic. Observe
that the first part of the definition is identical to the definition of stable expansions in autoepis-
temic logic AEL [1] while the second part coincides3 with the definition of circumscriptive
expansions in circumscriptive epistemic logic AELcirc [6]. Also notice that ¬DF ∈ E if and
only if E |=circ ¬F and not when E 6|=circF. This is a very important feature distinguishing
default introspection from positive introspection.

3Except that it uses ¬DF instead of Not F .
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It is easy to see that both autoepistemic logic AEL and circumscriptive epistemic logic
AELcirc are special cases of the new framework. Indeed, it suffices to observe that for any
autoepistemic theory T which uses only (Moore’s) positive introspection operator L there is a
one-to-one correspondence between stable expansions of T and static expansions of T . Since
an analogous result holds for circumscriptive epistemic logic we immediately obtain:

Corollary 3.1. Both autoepistemic logic AEL and circumscriptive epistemic logic AELcirc

are special cases of static epistemic logic. More precisely, both formalisms can be properly
embedded into the formalism based on static expansions. �

While both autoepistemic logic and circumscriptive epistemic logic can be embedded in the
static epistemic logic, the latter one is clearly more expressive than each one of them considered
separately.

It is also clear that (propositional) circumscription (and thus also GCWA, ECWA and
CWA) is a special case of the proposed formalism. Indeed, if T is a theory which does not
contain any introspective propositionsLF andDF then the unique static expansion of T implies
the default proposition DF if and only if F is implied by circumscription of T , i.e., if T |=circ

F . Consequently, we obtain:

Corollary 3.2. Propositional circumscription, CWA, GCWA and ECWA are special cases of
static epistemic logic. More precisely, all of these formalisms can be properly embedded into
the formalism based on static expansions. �

3.1 Stable Semantics of Logic Programs

Since Moore’s autoepistemic logic is a special case of static epistemic logic, it follows from
the results of Gelfond and Lifschitz [8] that stable semantics can be obtained by means of a
suitable translation of a logic program into an epistemic theory. Namely, for a logic program P
consisting of clauses:

A← B1, ..., Bm,∼C1, ...,∼Cn

define TL(P ) to be its translation into the epistemic theory consisting of formulae:

B1 ∧ ... ∧Bm ∧ ¬LC1 ∧ ... ∧ ¬LCn ⊃ A.

The translation TL(P ) is obtained therefore by replacing the negation by default ∼C appearing
in the logic program P by ¬LC.

Theorem 3.1 (cf. [8]). There is a one-to-one correspondence between stable modelsM of the
program P and static expansions E of TL(P ). Namely:

A ∈M iff LA ∈ E

¬A ∈M iff ¬LA ∈ E .�
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3.2 Well-Founded and Stationary Semantics

Similarly, since circumscriptive epistemic logic is a special case of static epistemic logic, it
follows from the results of Przymusinski [6] that partial stable semantics can be obtained by
means of a suitable translation of a logic program into an epistemic theory. Namely, for a logic
program P consisting of clauses:

A← B1, ..., Bm,∼C1, ...,∼Cn

define TD(P ) to be its translation into the epistemic theory consisting of formulae:

B1 ∧ ... ∧Bm ∧ ¬DC1 ∧ ... ∧ ¬DCn ⊃ A.

The translation TD(P ) is obtained therefore by replacing the negation by default∼C appearing
in the logic program P by ¬DC.

Theorem 3.2 (cf. [6]). There is a one-to-one correspondence between partial stable modelsM
of the program P and static expansions E of TD(P ). Namely:

A ∈M iff DA ∈ E

¬A ∈M iff ¬DA ∈ E .

Since the well-founded model of P coincides with the least partial stable model of P [11], it
corresponds to the least static expansion of TD(P ).

Moreover, (total) stable modelsM of P correspond to those static expansions E of TD(P )
that satisfy the condition:

for all A, either DA ∈ E or ¬DA ∈ E ,

i.e., those static expansions that completely define the truth of all default propositions DA. �

3.3 Combining Stable and Well-founded Negations

As we have seen above, both stable and well-founded negation in logic programs can be ob-
tained by translating ∼C into introspective literals ¬LC and ¬DC, respectively. However, the
existence of both types of introspective literals in static epistemic logic allows us to combine
both types of negation in one epistemic theory consisting of formulae of the form:

B1 ∧ ... ∧Bm ∧ ¬LC1 ∧ ... ∧ ¬LCk ∧ ¬DCk+1 ∧ ... ∧ ¬DCn ⊃ A.

Such an epistemic theory may be viewed as representing a more general logic program which
permits the simultaneous use of both types of negation. In such logic programs, the first k
negative premises represent stable negation and the remaining ones represent the well-founded
negation. The ability to use both types of negation significantly increases the expressibility of
logic programs. Examples of such programs with mixed negations will be given in the full
paper.
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3.4 Adding “Classical” Negation

We will now add to static epistemic logic the so called “classical negation” in the sense of
Gelfond and Lifschitz [9]. As pointed out by many researchers, the form of negation proposed
by Gelfond and Lifschitz does not really represent classical negation but rather its weaker form
which does not require the law of excluded middle A ∨ ¬A. Consequently, following Pereira
et.al. [18] we will call it explicit negation.

In order to use explicit negation in epistemic logic it suffices to add to the language K new
objective propositional symbols “Ã” with the intended meaning that Ã is the “negation of A”,
augmented with the explicit negation axioms:

A ∧ Ã ⊃ false .

As we mentioned above, the law of excluded middle A ∨ Ã is not assumed. As pointed out by
Bob Kowalski, the proposition A may describe the property of being “good” while proposition
Ã describes the property of being “bad”. The explicit negation axiom states that things cannot
be both good and bad. We do not assume, however, that things must always be either good or
bad.

This method of defining explicit (or “classical”) negation applies to all epistemic theories.
In particular, when applied to logic programs, one obtains the following one-to-one correspon-
dence between stable (partial stable) models of logic programs with explicit (or “classical”)
negation [8, 11] and static expansions of their translation into epistemic logic which directly
generalizes the results obtained before.

Theorem 3.3. There is a one-to-one correspondence between stable (resp. partial stable) mod-
els M of a logic program P with explicit negation and static expansions E of TL(P ) (resp.
TD(P )). Namely:

L ∈M iff LL ∈ E (resp. DL ∈ E)
¬L ∈M iff ¬LL ∈ E (resp. ¬DL ∈ E).

Here L represents either a standard propositional symbol A or its explicit negation Ã. �

3.5 Adding Generalized Closed World Assumption

It is also easy to add a suitable form of Generalized Closed World Assumption (GCWA) [4, 5]
to static epistemic theories. It suffices to add the axioms:

[GCWA] LD(¬F ) ⊃ ¬F

for any positive formula F . The axiom states that negation of a formula F holds in a given
theory T if F can be shown to be false by default, i.e., if F is false in all minimal models of T .

Observe that this GCWA axiom is different from similar axioms:

[CWA] ¬LF ⊃ ¬F

and
[GCWA′] ¬DF ⊃ ¬F
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which were considered earlier.
The second axiom CWA essentially describes Reiter’s CWA [3]. It is significantly stronger

than both GCWA and GCWA′. The third axiom GCWA′ is also stronger than GCWA but
weaker than CWA.

Example 3.1. Adding the GCWA axiom to the theory ¬DA ⊃ A results in an epistemic
theory with one static expansion in which neither DA nor ¬DA holds. However, adding either
the axiom CWA or the axiom GCWA′ to the same theory results in an inconsistent theory,
i.e., a theory without static expansions. �

3.6 Semantics of Disjunctive Logic Programs and Disjunctive Deductive Databases

As it was the case with normal logic programs, static expansions can be used to define the
semantics of disjunctive logic programs (see [19]). For any disjunctive logic program P :

A1 ∨ ... ∨Al ← B1, ..., Bm,∼C1, ...,∼Cn

define T ∗D(P ) to be its translation into the epistemic theory consisting of formulae:

B1 ∧ ... ∧Bm ∧ ¬DC1 ∧ ... ∧ ¬DCn ⊃ A1 ∨ ... ∨Al

together with the GCWA axioms:

LD(¬F ) ⊃ ¬F

and distributive axioms for default introspection:

D(F ∨G) ≡ DF ∨ DG

D(F ∧G) ≡ DF ∧ DG.

The transformation T ∗D(P ) is obtained by replacing the negation by default ∼C appearing in
the premises of P by ¬DC and is a generalization of the translation previously used with partial
stable models.

It turns out that this transformation immediately leads to the stationary semantics of dis-
junctive logic programs defined4 in [13]:

Theorem 3.4. There is a one-to-one correspondence between stationary expansions of the dis-
junctive program P and static expansions of its translation T ∗D(P ). In particular, the least
stationary expansion of P corresponds to the least static expansion of T ∗D(P ). �

Stationary semantics has a number of important advantages [11]:

• It is defined for all disjunctive programs and every disjunctive program has the least
stationary expansion;

4We refer here to the definition not using the disjunctive inference rule.
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• It can be computed by means of natural iterative minimal model or fixed-point proce-
dures;

• For normal programs it coincides with the partial stable (well-founded) semantics.

The last theorem gives a particularly straightforward characterization of stationary seman-
tics.

3.7 Adding the Localization Axiom

Suppose that P is the program:
A ∨B ←
C ← ∼ A
C ← ∼ B

After transformation by T ∗D(P ), this program has three static (or stationary) expansions
generated by the formulae listed below:

E1 = {A ∨B, ¬A ∨ ¬B, C}

E2 = {¬A, B, C}

E3 = {A, ¬B, C}.

The last two of them can be viewed as representing models of the program P while the first
one represents the so called state or a model consisting of disjunctions [20]. States are very
important for the proper definition of semantics of disjunctive programs. However, if for some
reason we would prefer to limit ourselves to models only, this can be easily achieved in our
formalism by introducing the following localization axiom:

L(F ∨G) ≡ LF ∨ LG,

for any positive formulae F and G. The axiom says that if a disjunction is logically implied by
the theory then so is one of its components.

After adding localization axioms to the above definition of transformation T ∗D(P ) we obtain
the partial stable semantics of disjunctive programs introduced in [12]:

Theorem 3.5. In the presence of localization axioms, there is a one-to-one correspondence
between disjunctive partial stable modelsM of the program P and static expansions E of its
translation T ∗D(P ) into epistemic theory.

Moreover, (total) disjunctive stable modelsM of P correspond to those static expansions
E of T ∗D(P ) that satisfy the condition:

for all A, either DA ∈ E or ¬DA ∈ E ,

i.e., those static expansions that completely define the truth of all default propositions DA. �

Both results characterizing semantics of disjunctive programs extend verbatim to the case
of disjunctive programs with explicit (or “classical”) negation.
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3.8 Epistemic Specifications

Epistemic specifications were introduced by Gelfond [7] using his newly defined language of
belief sets and world views. We will now show that epistemic specifications constitute a special
case of static epistemic logic and thus, in particular, can be defined entirely in the language of
classical propositional logic.

Let G be the database describing Gelfond’s epistemic specification. Define T (G) to be its
translation into static epistemic logic (with explicit negation) obtained by:

• Replacing, for all objective propositions A, the classical negation symbol ¬A by the
explicit negation symbol Ã.
Motivation: This substitution is caused by the fact that in his paper Gelfond uses the clas-
sical negation symbol ¬A when in fact he refers to explicit negation Ã. Using the classi-
cal negation symbol ¬A to denote explicit negation Ã makes it impossible to distinguish
between the two different types of negation and thus unnecessarily limits the expressive
power of resulting theories. It also leads to some technical difficulties. The substitution
allows us to reserve the standard negation symbol ¬A for true classical negation. As a
result, we are able to express everything that Gelfond can express in his language and
more because now we effectively have two negations at our disposal. In particular, we
are able to express things like ¬Ã, etc.

• Replacing everywhere Gelfond’s “possibility” operator MF by ¬K¬F .
Motivation: Gelfond’s “possibility” operator MF is shown to be in fact equivalent to
¬K¬F , and, vice versa, Gelfond’s “belief” operator KF is shown to be equivalent to
¬M¬F . Consequently, only one of these operators is really needed. This observation
was made possible by the fact that we ensured a clear distinction between the two types
of negation. Notice that in these equivalences we use the real classical negation and not
the explicit negation.

• Finally, replacing everywhere Gelfond’s “belief” operator KF by LDF .
Motivation: The meaning of Gelfond’s belief operator KF is shown to be equivalent to
the fact that the formula F can be shown to be true by default, i.e., true in all minimal
models of the theory.

Now we can show that epistemic specifications are properly embeddable into static epis-
temic logic:

Theorem 3.6. Epistemic specifications are a special case of static epistemic expansions, i.e.,
they can be properly embedded into static epistemic logic.

More precisely, there is a one-to-one correspondence between static expansions E of T (G)
and Gelfond’s world views V of G, i.e., to every static expansion E of T (G) there corresponds
a unique world view V of G, and, vice versa.

Moreover, there is a one-to-one correspondence between minimal modelsM of static ex-
pansions E of T (G) and belief sets B of the corresponding world view V of G. �
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The above theorem can be summarized as follows:

Static expansions E of T (G)⇔ World views V of G

Minimal models of E ⇔ Belief sets of V .

While epistemic specifications can be embedded into static epistemic logic, the latter for-
malism is strictly more expressive than the former. For example, static epistemic logic allows
us to express well-founded negation which cannot be naturally defined using epistemic specifi-
cations.

Remark 3.1. The limited size of this abstact does not allow us to provide complete details. In
particular, Gelfond’s formalism also allows universally and existentially quantified formulae
and a suitable form of “negation as failure”. However, since the quantification takes place over
the Herbrand universe, it can be equivalently represented by the usual instantiation of the theory
which reduces it to a purely propositional case. Similarly, Gelfond’s “negation by failure” can
be easily translated into the language of static epistemic logic. Details will be given in the full
paper. �

Example 3.2. Consider Gelfond’s example G given by:

Pa ∨ Pb ←
¬Pa ← ¬MPa
¬Pb ← ¬MPb
¬Pc ← ¬MPc

After translation, we obtain the epistemic theory T (G):

Pa ∨ Pb ←
P̃ a ← LD¬Pa

P̃ b ← LD¬Pb

P̃ c ← LD¬Pc

The theory T (G) has three static epistemic expansions which are easily shown to be in
one-to-one correspondence with the world views of G. �

The fact that epistemic specifications can be properly embedded into static epistemic logic
has some important consequences:

• It shows that the formalism of epistemic specifications can be expressed entirely in the
language of classical propositional logic. In particular, it allows us to view epistemic
specification rules as pure logical implications.

• It ensures a proper distinction between classical and explicit negation which not only
increases the expressive power of the formalism but also allows us to establish the equiv-
alences KF ≡ ¬M¬F and MF ≡ ¬K¬F between Gelfond’s “belief” and “possibil-
ity” operators.
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• It allows us to consider arbitrarily complex theories and not just restricted epistemic
databases (as defined in [7]).

• Static expansions constitute a strictly stronger (more expressive) framework than epis-
temic specifications. In particular, they allow us to express well-founded negation which
is not naturally expressible in epistemic specifications.

• It simplifies the definition of epistemic specifications.

4 Conclusion

We introduced a simple and uniform framework which encompasses several non-monotonic
formalisms and several semantics of normal and disjunctive logic programs. The proposed for-
malism is defined in the language of classical propositional logic and is more expressive than
the individual formalisms that it generalizes. It allows us to better understand mutual relation-
ships existing between different formalisms and leads to simpler and more natural definitions
of some of them.

The proposed formalism is quite flexible allowing various extensions and modifications,
including:

• Use of a different formalism to define default introspection DF . In this paper we used
prioritized circumscription T |=circ F . For example, by using the Weak Generalized
Closed World Assumption WGCWA [21] instead of GCWA, one can ensure that dis-
junctions are treated inclusively rather than exclusively.

• Suitable expansion or restriction of the underlying propositional language K obtained,
for example, by allowing default introspection DF only on a selected class of formulae
F .

• Addition of additional axioms, such as the GCWA, Localization and Distributive ax-
ioms discussed in the paper.

By using such modifications we may be able to tailor the formalism of static epistemic logic
to fulfill the needs of different application domains.
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